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Latent semantic sentence clustering for
multi-document summarization

Johanna Geiß

Summary

This thesis investigates the applicability of Latent Semantic Analysis (LSA) to sentence
clustering for Multi-Document Summarization (MDS). In contrast to more shallow approaches
like measuring similarity of sentences by word overlap in a traditional vector space model, LSA
takes word usage patterns into account. So far LSA has been successfully applied to different
Information Retrieval (IR) tasks like information filtering and document classification (Dumais,
2004).

In the course of this research, different parameters essential to sentence clustering using a
hierarchical agglomerative clustering algorithm (HAC) in general and in combination with LSA
in particular are investigated. These parameters include, inter alia, information about the type
of vocabulary, the size of the semantic space and the optimal numbers of dimensions to be used
in LSA. These parameters have not previously been studied and evaluated in combination with
sentence clustering (chapter 4).

This thesis also presents the first gold standard for sentence clustering in MDS. To be able
to evaluate sentence clusterings directly and classify the influence of the different parameters on
the quality of sentence clustering, an evaluation strategy is developed that includes gold standard
comparison using different evaluation measures (chapter 5). Therefore the first compound gold
standard for sentence clustering was created. Several human annotators were asked to group
similar sentences into clusters following guidelines created for this purpose (section 5.4). The
evaluation of the human generated clusterings revealed that the human annotators agreed on
clustering sentences above chance. Analysis of the strategies adopted by the human annotators
revealed two groups – hunters and gatherers – who differ clearly in the structure and size of the
clusters they created (chapter 6).

On the basis of the evaluation strategy the parameters for sentence clustering and LSA are
optimized (chapter 7). A final experiment in which the performance of LSA in sentence cluster-
ing for MDS is compared to the simple word matching approach of the traditional Vector Space
Model (VSM) revealed that LSA produces better quality sentence clusters for MDS than VSM.
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Chapter 1

Introduction

The beginning is the most important part of the
work.

PLATO

In this thesis I will examine redundancy identification for Multi-Document Summarization
(MDS) using sentence clustering based on Latent Semantic Analysis (LSA) and its evaluation.
The task of multi-document summarization is to create one summary for a group of documents
that largely cover the same topic. Multi-document summarization is becoming increasingly
important as the rapid development of the internet increases the amount of textual information
available online.

The greatest challenge for MDS lies in identifying redundant information within a group
of documents. To prevent repetition in a summary the MDS system needs to be able to detect
similar and overlapping information and include it in the summary only once. On the other
hand redundant information is a good measure of importance. Information that is given in most
of the documents must be relevant to the topic and should be included in the summary, whereas
information that is only present in one document might be omitted.

Sentence clustering can be used to find repeated information by grouping similar sentences
together. There are different methods to identify similar sentences. Some systems use shal-
low techniques for detecting similarities in sentences, e.g., word or n-gram overlap. Others use
deeper syntactic or semantic analysis. The resulting clusters represent subtopics of the doc-
ument set, where one cluster ideally describes one subtopic. The clusters can be ranked for
summary worthiness by distribution over documents. To avoid repetition, one sentence can be
chosen or generated for each cluster to represent that subtopic in the summary.

Redundancy identification and sentence clustering is a central step in MDS. If redundant
information is not detected, the summary will be repetitive and not very informative. If the
most important subtopics of the document set are not identified, the summary will not properly
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reflect the content of the source documents. Therefore it is necessary and useful to examine
sentence clustering for MDS in detail.

In the course of this thesis I will examine the applicability of Latent Semantic Analysis
(LSA) to sentence clustering. In contrast to more shallow approaches like measuring similarity
of sentences by word overlap in a traditional vector space model, LSA takes word usage patterns
into account. The analysis considers not only the similarity between the surface form of the
sentences but also the underlying latent semantic structure within the sentences. At the same
time this approach is largely language independent, except perhaps for a stop word list or a
tokenizer, and is not reliant on deep syntactic and semantic analysis of the source documents. So
far LSA has been successfully applied to Information Retrieval (IR) tasks such as information
filtering and document classification (Dumais, 2004). However, its influence and capability for
sentence clustering for MDS has not been thoroughly studied. In this research I will examine
the influence of different parameters on sentence clustering using LSA and give an account of
how the parameters can be optimized.

Sentence clustering has been used as an early step in automatic text summarization, but its
functionality and performance have not been given sufficient attention. In most approaches the
clustering results are not directly evaluated. Usually the quality of the sentence clusters are only
evaluated indirectly by judging the quality of the generated summary. There is still no standard
evaluation method for summarization and no consensus in the summarization community on
how to evaluate a summary. The methods at hand are either superficial or expensive in time and
resources and not easily repeatable. Another argument against indirect evaluation of clustering
is that troubleshooting becomes more difficult. If a poor summary was created it is not clear
which component, for example information extraction through clustering or summary genera-
tion (using, e.g., language regeneration) is responsible for the lack of quality. However, there
is no gold standard for sentence clustering available to which the output of a clustering system
could be compared. Therefore I develop a strategy to build a gold standard for sentence cluster-
ing in MDS. I design a set of guidelines and rules that are given to human annotators. I compare
the clusterings created by the human judges and evaluate their inter-annotator agreement.

Another challenge is the comparison of sentence clusters to the gold standard. Numerous
evaluation methods are available. Each of them focusses on different properties of clustering
and has its own advantages. I describe and evaluate the most widely used and most promising
measures.

The thesis is organized as follows: Chapter 2 introduces MDS, highlighting some MDS
systems using sentence clustering and LSA. Chapter 3 gives an overview of the models and
implementation used. Chapter 4 gives an account of the problems occurring when clustering
sentences and the parameters that need to be considered when using LSA. Chapter 5 explains
the evaluation strategy, introduces the concept of a gold standard evaluation, explains how
to create a gold standard for sentence clustering, and compares different evaluation metrics.
Chapter 6 presents the results of the comparison of human generated clusterings. The results
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of the parameter optimization experiments are given in chapter 7. Chapter 8 compares the
performance of LSA in sentence clustering for MDS with the baseline approach using VSM.
Finally Chapter 9 summarizes the contributions of this thesis.
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Chapter 2

Background and motivation

Alles Gescheite ist schon gedacht worden.
Man muss nur versuchen, es noch einmal zu
denken.1

Wilhelm Meister’s Wanderjahre
JOHANN WOLFGANG GOETHE

The advent of the internet and easy access to computers and the global network has led to
an increasing amount of information, most of it textual. Nowadays anyone connected to the
internet can access information about virtually anything from all over the world, at his or her
fingertips. Anyone can contribute to the internet and not only consume but also produce in-
formation. The number of websites has grown from 100,000 in 1996 to over 270 million in
January 20112. This development is leading to information overload. To avoid drowning in
information, the flow needs to be filtered and the content condensed. Automatic text summa-
rization can help by providing shortened versions of texts. It is a technique where a computer
program creates a shortened version of a text while preserving the content of the source. In
the course of shortening no important information must be omitted and no information should
be repeated. The summary contains the most important information from the original text. In
general every automatic text summarization system involves three basic steps – analysis, pro-
cessing and generation (see figure 2.1). In the first step the document(s) to be summarized are
analysed, e.g., redundant information is identified. In the next step, processing, the information
for the summary is selected, for example the most important clusters of redundant information
are selected. During generation the actual text of the summary is generated, for example by
including one sentence for each cluster in the summary.

Although all summarization systems have these three stages in common, different systems
produce different summaries. There are numerous types of summaries with different charac-

1All intelligent thoughts have already been thought; what is necessary is only to try to think them again.
2http://news.netcraft.com/archives/2011/01/12/january-2011-web-server-

survey-4.html last visited 14.02.2011
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Figure 2.1: Framework of an automatic text summarization system

teristics (see figure 2.1). The first aspect is the source to be summarized; this can be a single
document or multiple documents.

Another group of characteristics relates to the content. One such characteristic is the audi-
ence . The summary might be targeted to a generic audience, so that the summary reflects all
major themes of the original text(s). If a query is provided, e.g., by a user, he or she is only
interested in a specific aspect and the summary will be targeted to meet the information need.
Another feature is the scope of a summary. A general or background summary will give all
available information, assuming the reader has no prior knowledge of the topic, whereas in an
update summary only the latest developments are considered. The produced summary can be
indicative or informative. An indicative summary provides information about the topic of the
text(s) and indicates what the text is about. It does not necessarily contain content from the
source. An informative summary contains the main statements of the source. It can stand in
place of the original document(s) whereas an indicative summary can only support the decision
to read the original text(s) or not.

The last group of features determines the output of a summarization system. The reduc-
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tion rate determines the length of the summary and the output type indicates if an extract or
abstract should be created. An extract consists entirely of material from the source; usually
sentences are selected from the source and pasted into a summary. An abstract on the other
hand includes sentences that are not necessarily present in the source. For example new sen-
tences are (re-)generated from the source text. If sentences that were not directly connected in
the source are concatenated to form an extract, the produced summary might lack in readability,
coherence and clarity, for example when anaphora are not resolved. Sentences in an abstract are
(re-)generated from source sentences or phrases and the problems of readability and coherence
are solved during generation. The creation of an extract is easier and more robust. The output
always contains grammatical sentences as they are taken from the source directly. For generat-
ing an abstract more complex methods are required and the output might not always consist of
grammatical sentences only. In this thesis I will concentrate on methods for creating informative
and general summaries of multiple documents that are targeted at a general audience.

The internet offers access to many websites of newspapers or news agencies. Most news
websites from the same region or country report about the same events and sometimes even for
an extended period of time. For example when there is a major natural disaster all newspapers
and news agencies publish reports about this event during the following days or weeks. This
results in information overlap. Information is repeated, even within the same newspaper or
agency. Therefore the amount of redundant information is growing and the reader often reads
the same piece of information over and over again. Multi-document summarization can help
to avoid repetition and to provide the reader with condensed non-redundant information. Thus
users can quickly familiarize themselves with a topic that was previously described by a large
cluster of documents.

2.1 Multi-document summarization

In MDS one summary is created for a set of documents. These document sets can contain ar-
ticles from different sources, e.g., from different newspapers on different dates or documents
retrieved by an information retrieval system in response to a query. The documents in a set are
related to each other, with content related to the same event, person or topic. The Document
Understanding Conferences (DUC) (DUC, 2007) provide such sets of documents. DUC was
established in 2001 to offer a forum for summarization researchers to compare their methods
and results on common test sets given standardized evaluation methods. DUC was annually
held by NIST3 from 2001 until 2008, when DUC became part of the Text Analysis Conference
(TAC) as summarization track. Over the years different summarization tasks were addressed,
for example single document summarization, multi-document summarization, and update sum-
marization. Each year a set of document clusters and an evaluation scheme were provided. The
document clusters (hereinafter referred to as DUC clusters) consist of documents from various

3National Institute of Standards and Technology www.nist.gov last visited 15 March 2011
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newswires such as AP or New York Times. These articles were extracted from different corpora
like TIPSTER (Harman and Liberman, 1993), TREC (TREC, 2011) and AQUAINT (Linguistic
Data Consortium, 2002). The actual DUC clusters were created by NIST assessors who chose
topics and selected 10 to 50 documents related to each topic.

The documents within a set overlap in information and thereby include redundant infor-
mation. Irrelevant to single document summarization, information overlap is one of the biggest
challenges to MDS systems. While repeated information is a good evidence for importance, this
information should be included in a summary only once in order to avoid a repetitive summary.
The idea behind this is that information that is repeated throughout a collection of articles about
the same event must be important for the understanding and comprehension of the described
episode. The task is to identify the information that is common to most of the articles and rep-
resent that piece of information only once in the summary. The problem is that almost certainly
the documents in a set are written by different authors with different writing styles and vocabu-
laries. So the content might be the same or very similar but the surface of the articles might be
very different.

Different approaches to recognize redundancy in text are used. Goldstein et al. (2000) de-
veloped maximal marginal relevance for MDS (MMR-MD) for detecting redundant sentences
when creating extraction based multi-document summaries in response to a user query. The
MMR-MD is used to minimize redundancy and maximize relevance and diversity of a sum-
mary. First the texts to be summarized are segmented into passages (sentences, phrases or
paragraphs). Passages are treated as bags of words and cosine similarities between passages
and a query are calculated. The cosine similarity of a passage and a query is given by the co-
sine of the angle between two vectors describing the passage and the query (section 3.1.2). All
passages with a cosine score below a certain threshold are discarded, that is to say all passages
that are not relevant to the query are removed. Then the MMR-MD metric is applied to the re-
maining passages, determining those passages that are summary worthy, i.e., which are relevant
to the query but different to other passages already selected for the summary. Similarity calcu-
lation for passages is here based on the cosine similarity in a traditional vector space. Thus the
redundancy detection is based on word overlap. In the end the passages are combined follow-
ing some summary cohesion criterion, e.g., ranking by relevance or time. A similar approach to
redundancy removal is used in NeATS (Lin and Hovy, 2002), which combines well known tech-
niques from single document summarization. Important content is determined by identifying
key concepts in a document set and ranking the sentences of that document accordingly. The
sentences are selected and filtered using the position of a sentence in a document, stigma words
(words that usually cause discontinuity in summaries like conjunctions or pronouns) and MMR.
The remaining sentences are ordered chronologically and, where necessary, the sentences are
paired with an introductory sentence.

A similar approach is used in MEAD (Radev et al., 2004). The system also uses statistical
methods to determine which sentences to include in a summary. The sentences are compared
to a centroid vector of a document set. A centroid consists of words that represent a cluster
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of documents. For each sentence a score is calculated using the similarity to the centroid,
the position in the document, the word overlap with the first sentence in the document and a
redundancy penalty that measures the word overlap with other sentences.

These three approaches use word overlap to measure redundancy after the summary worthy
sentences were already identified. The statistical methods used are fast and robust. They are
largely independent of language, domain and genre.

The system described in Barzilay and Elhadad (1997) incorporates different techniques.
Common information is identified by building lexical chains using nouns and noun compounds.
The documents are segmented and lexical chains are built within these segments by using
WordNet relations. This approach enriches the surface form of a noun with meaning, by in-
cluding a word and its sense in a specific sentence in a lexical chain. Each chain consists of
similar words and the similarity of the words is only based on WordNet relations of the word
senses. The chains are scored and for the strongest chains sentences are selected to be included
in the summary. For scoring chains and selecting sentences for the strongest chains, the algo-
rithm uses word count and word overlap. Since the scope of WordNet is limited and most of the
entries are nouns, only part of the texts can be used for finding lexical chains.

Barzilay and McKeown (2005) uses a text-to-text generation approach. In order to create
a coherent abstract they try to identify common clauses within sentences by aligning syntac-
tic trees and combining these fragments into a new sentence. For this approach clusters of
sentences are used as input.

The latter two approaches require deeper syntactic and semantic analysis than the other
systems described. This makes them dependent on languages and maybe even domains. On
the other hand the systems rely not only on the surface form of text but also on the meaning of
words.

Sentence clustering is often used as a first step in MDS to identify redundant information.
In sentence clustering, semantically similar sentences are grouped together. Sentences within a
cluster overlap in information, but they do not have to be identical in meaning. In contrast to
paraphrases, sentences in a cluster do not have to cover the same amount of information. For
each cluster one sentence can be selected or as in Barzilay and McKeown (2005) be generated
to be included in the summary. In the next section I introduce some systems using clustering
and describe them in more detail.

2.1.1 Sentence clustering in summarization

For single document summarization Aliguliyev (2006) presents a summarization system based
on sentence clustering. The sentences from a document are clustered so that the intra-cluster
similarity is maximized while the inter-cluster similarity is minimized. For similarity calcu-
lation between the sentences the cosine measure is used and the sentences are represented as
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vectors of features (here words). For each cluster a representative sentence is chosen by deter-
mining the proximity to other sentences in the cluster and to the cluster centre. The similarity
of these sentences to the title is calculated and the sentences are ranked in descending order by
their relevance score (the weighted sum of the two similarity measures). Sentences are added
to the summary until the desired length of the summary is reached. In this approach the recog-
nition of redundancy is based on word overlap. The similarity between sentences is calculated
using the traditional vector space model. In this model two sentences are similar the more vector
features (here words) they have in common.

Sentence clustering for multiple documents in described in Seno and Nunes (2008). The
sentences of the documents are clustered using an incremental clustering algorithm. The first
cluster is created by selecting the first sentence from the first document. For all following
sentences it is decided if the sentence should belong to an existing cluster or if a new cluster is
created. The decision is based on a similarity threshold. In the described study two similarity
measures were tested: (i) word overlap and (ii) cosine measure. The word overlap metric
determines the number of words a sentence and a cluster have in common in proportion to
the total number of words in that sentence and that cluster. The best results were achieved
when the threshold for world overlap was 0.2, i.e., a sentence was only assigned to a cluster
if the word overlap score with that cluster was larger than 0.2. The second metric tested was
the cosine similarity between a sentence and the centroid of a cluster. Here a centroid consists
of terms that are representative for the cluster. Two methods for selecting the words for the
centroid were introduced involving tf -idf (term frequency-inverse document frequency) and
tf -isf (term frequency-inverse sentence frequency). The best sentence clusters were achieved
using the tf -idf centroid with a threshold of 0.3. The clusterings created by the system were
evaluated on a corpus of 20 sets of news articles. A reference clustering corpus was created by
the first author of that paper.

Marcu and Gerber (2001) present a system where non-overlapping elementary discourse
units (edus) are assigned importance scores and are clustered using a C-Link clustering algo-
rithm. They claim that large clusters with a high intra-cluster similarity can reliably represent
key information of the documents. The clusters are ranked according to the position of edus in
the documents, the importance of edus, and intra-cluster similarity. For each most important
cluster one edu is selected for the summary, until the target summary length is reached. This ap-
proach takes discourse information into account. An edu is about the size of a clause. However
the similarity calculation is again based on word overlap between the single units.

A different strategy is used in Hatzivassiloglou et al. (1999, 2001). The system described
is called SIMFINDER. It serves as analysis component for a multi-document summarizer de-
scribed in McKeown et al. (1999) that incorporates text reformulation for abstract generation
(Barzilay, 2003). In SIMFINDER similarity between paragraphs (mostly containing one sen-
tence) is determined using a range of linguistic features. These features include primitive
features based on single words or simplex noun phrases and composite features that combine
primitive features pairwise. The primitive features include word co-occurrence, matching noun
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phrases, WordNet synonyms or shared proper nouns. Once the similarities between any two
text passages are calculated, a non-hierarchical clustering algorithm is used to group similar text
units into clusters. Each cluster is then represented by one sentence in the summary. MultiGen
(Barzilay, 2003) analyses the sentences in each cluster and regenerates a sentence from the
information common to all sentences in that cluster.

For the evaluation of SIMFINDER a set of 10,535 manually marked pairs of paragraphs
was created. Two human annotators were asked to judge if the paragraphs contained common
information. They were given the guideline that only paragraphs that describe the same object
in the same way or in which the same object is acting the same are to be considered similar.
They found significant disagreement between the judges but the annotators were able to resolve
their differences. SIMFINDER found 36.6% of the similar paragraphs with 60.5% precision.
Unfortunately the evaluation looked only at pairs of paragraphs and not at clusters. Due to
the linguistic features, SIMFINDER is language dependent. Apart from the WordNet feature,
the similarity calculation is again based on simple word overlap enriched with some syntactic
analysis. The WordNet feature is limited to nouns and verbs present in WordNet. Although
WordNet keeps growing it only partially describes the English language and the relationships
between words.

The approaches described above did not evaluate the sentence clusters produced directly but
evaluated only the resulting summaries. There are two problems with indirect cluster evaluation:

(i) There is no consensus in the summarization community of how best to evaluate a sum-
mary. The evaluation methods used are either superficial, like ROUGE (Lin, 2004), which
counts overlapping units between two summaries, or expensive in time and resources, like
Pyramids (Nenkova and Passonneau, 2004). Hence the results are rarely comparable.

(ii) A correct classification of sentences into clusters cannot be verified. If the resulting sum-
mary is of poor quality it is difficult to determine which component is responsible.

Thus a clearly laid out strategy for evaluating sentence clusterings for MDS is needed.

2.1.2 LSA in summarization

There are some approaches that incorporate LSA in their MDS systems. Steinberger and
Krišt’an (2007) developed an algorithm for single document summarization using LSA and
apply it to the problem of MDS. Their system works as follows: first a term-by-sentence ma-
trix (TSM) A is created where each row represents a term and each column represents a sen-
tence. The cells of the matrix contain weighted term frequencies. Singular Value Decompo-
sition (SVD) is applied to A which breaks down the original TSM into r base vectors which
are linearly independent (for details see section 3.2). The result of SVD are three matrices T ,
S and DT . These submatrices are used to calculate a ranking matrix S2DT , which is used to
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rank the sentences of the document collection. For each sentence the length of the correspond-
ing vector in the ranking matrix is calculated. The sentences with the highest scores (length
of vector divided by (number of terms)0.4) are selected for the summary. To avoid redun-
dancy only sentences that are not similar to sentences already in the extract, measured with the
cosine similarity in the original term space, are added to it. The evaluation was done on 50
DUC 2005 clusters containing 1300 documents in total. The resulting extracts were evaluated
with ROUGE. The MDS system scored better than 27 other systems and worse than 5. In this
approach SVD helps to capture the relationships between words by analysing co-occurrence
patterns. Thus terms and sentences can be grouped on a more semantic basis than on word
overlap only. The authors claim that each singular vector (rows in DT ) represents a salient and
recurring word usage pattern. They assume that each word usage pattern describes one topic
in the document collection. Thus the topics of a document collection are represented by the
singular vectors and the magnitude of the singular value represents the degree of importance
of the corresponding pattern within the document set. The authors assume that the sentence
that best represents this pattern will have the largest index value within the singular vector. The
importance and the coverage of the word usage patterns within the sentences are taken into ac-
count by calculating the length of the sentence vectors in S2DT . The authors seek to choose
sentences for their summary that have the greatest combined weight across all important topics.

The problem is that in this approach the number of topics is linked to the number of singular
values. In SVD the number of singular values and vectors is equal to the rank of the matrix,
which is the number of linearly independent rows or columns of A. To reveal the latent seman-
tic structure and the themes in a document collection the dimensions are reduced (for details
see section 3.2). Choosing the number of dimensions to keep also determines the number of
topics. The unresolved problem is to determine the number of topics relevant for the document
collection in advance, when the system claims to be fully automatic. The relation between word
usage pattern and topic is debatable: is one word usage pattern equal to a topic of a document
collection? In addition, even if there is a one-to-one relationship between patterns and topics,
why are sentences selected that have the highest score over all topics? One could also choose
one sentence for each topic. Also, only the resulting extracts were evaluated using ROUGE,
where N-grams are compared to human written abstracts. A problem here is that human written
abstracts are compared to extracts. ROUGE only takes matches of N-grams into account, but
since humans created the abstracts, the content of the summaries compared can be similar but
the words used can be very different. But evaluation of summaries is an open and very contro-
versial problem. There was no evaluation of whether the sentences selected for the summary
really do represent the most important topics of the document collection.

Another approach using sentence clustering and LSA is described in Bing et al. (2005).
After a term-by-sentence matrix is built and factorized using SVD the sentences are compared
pairwise. The sentences with the highest similarity are merged to a sentence cluster, called
a fake sentence. This cluster and the rest of the sentences are used to create a new matrix
and again (after applying SVD) all sentences are compared pairwise and so on. This process
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is repeated until the predefined number of clusters is reached. For each cluster the centroid
sentence is determined. The centroid sentences are then sorted and included in the summary.
This approach was tested on a dataset consisting of 20 documents clusters of 7-9 news articles
from various websites. Judges were asked to grade the 20 extracts created by the system using
a score between 1 (bad summary) and 5 (good summary). 75% of the summaries were marked
with a score of 3 or 4. In this system only matrix D is used to cluster the sentences. I think
it is unreasonable that the singular values are not taken into account since they correspond to
the importance of each concept within the document collection. It is very time and memory
consuming to build a new matrix and perform SVD every time two sentences are joined. The
fake sentence is longer than the other sentences, therefore will score higher similarity with other
sentences and attract more sentences. Again only the summary was evaluated as human judges
were asked to score the summary. The judges were not provided with other summaries, to which
they could compare the automatically created abstracts. It is not clear which instructions the
judges received or if they had access to the original documents.

The Embra system for DUC 2005 (Hachey et al., 2005) uses LSA to build a very large
semantic space to derive a more robust representation of sentences. In this space not only the
documents that are summarized are included but also other documents from the DUC 2005
and AQUAINT corpus. First a term-by-document matrix (TDM) is created, SVD is applied
and the resulting submatrices are reduced to 100 dimensions. From the submatrices a sentence
representation is built, where each sentence is represented by a vector that is the average of the
vectors of the words the sentence contains. This sentence representation is then passed to an
MMR-style algorithm, which determines relevancy and redundancy (see above). The sentences
with the highest MMR score are selected for the summary. In contrast to Goldstein et al. (2000)
here the redundancy calculation is not based on single word overlap but on the word usage
patterns revealed by LSA. SVD was performed on a term by document matrix, but it was not
evaluated how the size of a semantic space influences redundancy identification.

The approaches described here all lack the evaluation of the influence of LSA on detecting
redundant information. Only indirect evaluation of the redundancy identification was carried out
by evaluating the resulting summary. The influence of parameters like the number of dimen-
sions (k), size of the semantic space or vocabulary included have not been properly analysed.
However these parameters might have a great impact on the quality of redundancy identification.
Once again in order to optimize these parameters a direct evaluation of the sentence clusters is
required.

2.2 Motivation

Sentence clustering integrates well in a MDS system creating general or query-related abstracts.
Given a set of related documents, the documents are split into smaller units like paragraphs, sen-
tences, snippets and words. The units are clustered separately or simultaneously. The retrieved
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clusters of different sized units represent the theme of the document set. Afterwards the clusters
are handed over to a language generation system, e.g., MultiGen (Barzilay, 2003), which creates
an abstract.

The prerequisite for an MDS system is one or more sets of documents that relate to the same
topic, which in case of news articles can be, e.g., a person, an aspect of a person’s life or an
event like a natural disaster or a general election. For this thesis it is assumed that a document
classifier is in place which groups documents into topic groups.

For an MDS system it is vital to find out what a given set of documents is about. The
premise is that the documents in a set are about the same matter. The assumption is that the
information that most often recurs in the documents is the main subject of the texts. But in
different documents the same or similar pieces of information might be given by different sen-
tences, wordings or expressions. Redundancy identification and removal is therefore a crucial
step in MDS. As described in the previous sections, often redundancies are removed after the
content for the summary has been selected (Goldstein et al., 2000; Lin and Hovy, 2002; Radev
et al., 2004). This approach is not well suited for MDS. If the documents to be summarized
overlap considerably, which is the optimal starting position for any MDS system, there will be
many sentences that are very similar. Thus clustering the sentences first by theme is less costly
in time and resources.

Clustering is a well established method for identifying redundancy (see section 2.1.1). It can
also be used to rank clusters by their summary worthiness. The idea behind sentence clustering
is to find repetitive and hence similar information. Information that is repeated throughout a
collection of articles about the same event must be important for the understanding and com-
prehension of the described episode. To find redundant information within a document set,
different surface forms of the same or very similar information are grouped together. Once
these groups of text units are found they are ranked. The best clusters represent the topics of
that document set. In many MDS approaches, the text units that are grouped into clusters are
sentences. The similarity between sentences is often measured by the number of terms they
share. To overcome the problems of different word forms and synonyms, stemming and Word-
Net (Fellbaum, 1998) are often used. These approaches are language dependent and rely on the
coverage of WordNet.

Clustering using LSA is largely independent of the language, unlike approaches that require
deeper linguistics analysis. It has also the advantage that the similarity estimation is not based
on shallow methods like word matching. Incorporation of LSA takes underlying latent semantic
structures in form of word usage patterns into account. Thus the problem of synonymy is
avoided.

The first step towards multi-unit clustering is to examine the most obvious unit – the sen-
tences. Sentences are reasonably easy to identify. There are several sentence boundary detectors
available, e. g., RASP (Briscoe et al., 2006). A sentence is normally the largest grammatical
unit. In traditional definitions a sentence is often described as a set of words expressing a com-
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plete thought (Chalker and Weiner, 1994). In Peters (2004) the functions of a sentence are
described as making statements, asking questions, uttering commands and voicing exclama-
tions.

In this thesis the focus lies on summarizing multiple news articles. The advantage of the
journalistic writing style is that journalists usually try to be explicit and precise. Wikipedia
(2011b)4 describes the news style as follows:

“Journalistic prose is explicit and precise, and tries not to rely on jargon. As a
rule, journalists will not use a long word when a short one will do. They use
subject-verb-object construction and vivid, active prose [...]. They offer anecdotes,
examples and metaphors, and they rarely depend on colorless generalizations or
abstract ideas. News writers try to avoid using the same word more than once in a
paragraph [..].”

Thus fragmentary sentences, exclamative or imperative sentences will remain the exception.

Alternatively other text units like words, paragraphs or snippets could be used for identifying
redundant information in news articles. However they have some disadvantages over sentences.
Single words are too small to be used as a clustering unit. The meaning of a word often depends
on the context. One word alone does not cover a whole piece of information. On the other hand,
paragraphs, which contain more than one sentence, are too large a unit for clustering in MDS.
The sentences of a paragraph might contain sentences with slightly different topics or themes.
In clustering for redundancy identification it is important that the units used cover a whole piece
of information and ideally only one. However this problem of multiple themes might also occur
with sentences. Desirable would be a unit smaller than a sentence that covers exactly one topic,
thought or theme. Thadani and McKeown (2008) call the textual representation of a basic unit
of information in a document a nugget, but in their experiments they use a concept-annotated
corpus. Finding information nuggets in text requires stable and reliable information extraction
techniques using deep semantic and syntactic analysis. Thus it is best to start with the best unit
at hand – sentences.

I first look at the parameters that could influence the quality of sentence clusterings using
LSA. These have not previously been evaluated in detail in relation to sentence clustering for
MDS. First, basic indexing techniques like stemming or stop word removal are tested on IR cor-
pora (section 4.2). I will then investigate how different index vocabularies influence sentence
clustering. The index vocabulary determines the terms that form the basis on which sentences
are compared and similarity between them is calculated. For IR it is often claimed that the
nouns of a sentence carry the most meaning and that they are the distinctive features. I will ex-
amine different strategies to create index vocabularies and assess their influence on redundancy
identification using sentence clustering (section 4.2.2).

4http://en.wikipedia.org/wiki/News_style last visited 2. March 2011 11:15
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The first sentence cluster experiments are carried out on the Microsoft Research Paraphrase
Corpus (Dolan et al., 2004; Dolan and Brockett, 2005). Here I test and evaluate the basic
clustering algorithm parameters like linkage and distance metric. In more detail I will examine
the clustering threshold t for the cophenetic distance. This threshold determines where a cluster
tree produced by hierarchical agglomerative clustering (HAC) is cut to be split into flat clusters.
This parameter might have a great impact on the quality of the clusterings.

Another important parameter I examine is the size of the clustering space, which is deter-
mined by the number of sentences included (see section 4.3). There are different hypotheses
about how the size of the corpus might influence the structure and quality of the semantic space.
One approach assumes that a large corpus or an additional background corpus leads to a more
robust and accurate semantic space. A different strategy says that a general background corpus
might bias term relations and that a smaller localized corpus is more sensitive to small effects.
The influence of different sized corpora on sentence clustering for MDS has never been studied
before. I will test three space options (local, extended and global) and how they affect sentence
clustering.

One of the most important parameters for any LSA application is the number of remaining
dimensions k. I also study how k influences the quality of sentence clustering and whether the
optimal value for k depends on other parameters like t, cluster space size or vocabulary.

I will also compare the performance of LSA in sentence clustering with the simple word
matching approach of VSM. This comparison will show if the usage of underlying latent se-
mantic structures in a text helps to create better sentences clusters for redundancy identification.

A strong evaluation strategy is needed to evaluate the influence of different parameters on
clustering quality and to compare different approaches. I decided to use a gold standard compar-
ison strategy (see chapter 5 for details), where the clusterings created by my system BOSSEClu

are compared to a ground truth. Since no gold standard was available for sentence clustering
in MDS, I decided to create the first compound gold standard for sentence clustering with the
help of human annotators. In this context, guidelines were designed to guide the annotators and
help them to create consistent clusterings that comply with the same standards. In course of the
creation of a gold standard for MDS, I will also study how humans cluster similar sentences and
which strategies they use.

Also important for evaluation are the measures used. Since many different evaluation met-
rics are available, I will examine their properties and evaluate which measures are best suited
for sentence clustering in MDS.



Chapter 3

Semantic spaces, algorithms and
implementation

And now for something completely different.

MONTY PYTHON

In this chapter I describe the different semantic spaces, algorithms and the implementa-
tion used throughout this thesis. Section 3.1 introduces the standard Vector Space Model
(VSM). Section 3.2 explains Latent Semantic Analysis (LSA) and how it incorporates Sin-
gular Value Decomposition (SVD) to reveal the latent semantic structure within a text collec-
tion. An overview of the implementation and structure of my sentence clustering system called
BOSSEClu is given in section 3.4. Section 3.5 introduces the clustering algorithm.

3.1 Standard vector space model

The standard vector space model (hereinafter referred to as VSM) is a model for representing
text in a vector space based on the bag of words approach. It was first presented as a model
for Information Retrieval (IR) in Salton (1979) and was used in the System for the Mechani-
cal Analysis and Retrieval of Text (SMART) information retrieval system (Salton, 1971b) (on
which see Dubin (2004)).

In VSM, text units of a corpus are represented by vectors. Traditionally a whole document
is used as a text unit, but any other text unit like paragraphs or sentences can be used just as
well. Each dimension of a vector corresponds to a term that is present in the corpus. A term
might be, e.g., a single word, n-gram or a phrase. If a term occurs in a document the value of
that dimension is non-zero. Values can be binary (1 → term is present in the document, 0 →
term is not present in the document), frequencies of terms in the document, or term weights.
A whole text corpus can then be represented by a term-by-document matrix A. Consider the
following example: a sample text corpus containing the following three sentences:
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s1 It’s raining cats and dogs.

s2 A man is taking his dog for a walk.

s3 A man takes his cat to the vet.

The terms man, cat and dog are used for indexing. The corpus can then be represented by the
term-by-sentence matrix (TSM) A in table 3.1.

s1 s2 s3

cat 1 0 1
dog 1 1 0
man 0 1 1

Table 3.1: TSM for a small sample corpus

Figure 3.1 shows a graph of the vector space drawn by the terms. The sentences are repre-
sented as vectors in space.

cat

dog

man

s1

1

1
s2

1
s2

Figure 3.1: Vector space for a small sample corpus

The advantage of VSM is that within this model similarities between documents or a query
and a document can be calculated.

3.1.1 Term weighting

The idea behind term weighting is to assign a weight to represent the importance of a term. The
raw frequency of a term only states how often a term occurs in a document without measuring
the importance of that term within the document or within the whole collection. Different
weighting schemes are available. The most common and popular one is the tf -idf weighting
scheme (Salton and McGill, 1986). It combines local and global weighting of a term. I will
use a modified version called ntf -idf since earlier experiments showed that using this modified
scheme led to a slight increase in retrieval performance than using the raw term frequency (tf ).
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Local term weighting For local term weighting I will use the normalized term frequency
(ntf ) (Haenelt, 2009). It measures the importance of a term within a document.

ntf i,m =
freq i,m
max j,m

(3.1)

The normalized term frequency ntf i,m is the fraction of the frequency freq i,m of term ti in
document Dm and the highest frequency max j,m of any term tn in document Dm. This formula
assign a higher weight to terms that occur often in a document.

Global term weighting (idf) The inverse document frequency (idf ) (Spärck Jones, 1972)
measures the importance of a term within the document collection.

idf i = log
N

ni
(3.2)

Here N is the number of all documents in the collection and ni is the number of documents that
term i occurs in. A term that occurs in every document of the collection gets a lower idf value.
This reflects the fact that it is not as significant for the distinction between documents as terms
that occur rarely throughout the document collection. For sentence clustering this scheme was
adopted to use sentences instead of documents. Thus the global weighting scheme is renamed
to isf – inverse sentence frequency.

This results in the ntf -isf weighting scheme:

wi,m = ntf i,m × isf i (3.3)

where the weight w of a term i in a sentence m is defined by the product of the local weight of
term i in sentence m and the global weight of term i. Dumais (1990) did some experiments on
weighting schemes and LSI and concluded that using weighting has a positive effect on retrieval
performance.

3.1.2 Similarity calculation

A very popular similarity measure is the cosine similarity. This measure is based on the angle α
between two vectors in the VSM. The closer the vectors are to each other the more similar are
the documents. The calculation of an angle between two vectors ~a and ~b can be derived from
the Euclidean dot product:

~a ·~b = |~a||~b| · cos(α) (3.4)

This states that the product of two vectors is given by the product of their norms (in spatial
terms, the length of the vector) multiplied by the cosine of the angle α between them. Given
equation 3.4 the cosine similarity is therefore:

cos(α) =
~a ·~b
|~a||~b|

(3.5)

The values of cos(α) can range from −1 for opposing vectors to 1 for identical vectors.
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3.1.3 Disadvantages of VSM

Within the VSM only similarities between documents or between a query and documents can be
calculated within one space. If terms were to be compared to each other another space would
have to be drawn. In a term space, where the terms represent the dimensions, the terms are
considered to be linearly independent, which means their relations to each other are not taken
into account. Furthermore in the traditional vector space the similarity calculation is based only
on word matching. Each dimensions of a vector corresponds to a term. Two documents with
a similar topic but different vocabulary will not be placed next to each other. Only documents
that overlap in vocabulary will be considered similar.

3.2 Latent Semantic Analysis

Latent Semantic Indexing (LSI) was developed as a special vector space approach to concep-
tual IR (Deerwester et al., 1990). It attempts to overcome two common problems of search
engines – synonymy and polysemy. In the standard VSM (Salton, 1971b), the terms are as-
sumed to be independent and thus term associations are ignored. By contrast LSI re-expresses
a co-occurrence matrix in a new coordinate system. The idea is to uncover the latent semantic
structure of a document collection, i.e., to find hidden relations between terms, sentences, doc-
uments or other text units. This is achieved by using high-order co-occurrence (Kontostathis
and Pottenger, 2006). Unlike methods like VSM relying on literal word overlap for similarity
calculation, LSA relies on “a derived semantic relatedness measure” (Foltz et al., 1998). This
measure reflects the semantic similarity between words that are used in similar context, e.g.,
synonyms, antonyms, hyponyms or compounds.

The technique is called LSI when it is applied to IR otherwise it is called LSA

3.2.1 Latent Semantic Analysis: the basics

I will explain the functionality of LSA using an example from term similarity calculation. Con-
sider table 3.2, which consists of 9 titles from technical reports from Deerwester et al. (1990).
The data set can be represented by the term-by-document matrix B shown in table 3.3. Each
column describes a document, each row a term. Each cell entry indicates the frequency of a term
occurring in a document. This term-by-document matrix B can be used to calculate the simi-
larity between terms. When calculating similarities between terms each term is represented as
a vector in the Cartesian coordinate system for the standard vector space where the documents
define the dimensions. To calculate the similarity of two terms in a vector space, the distance
between the two term vectors can be measured using the cosine similarity measure (see section
3.1.2). A cosine of−1 implies that the compared vectors point into opposite directions whereas
vectors that have the same direction receive a cosine of 1. The cosine function for two vectors
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d1: Human machine interface for Lab ABC computer applications
d2: A survey of user opinion of computer system response time
d3: The EPS user interface management system
d4: System and human system engineering testing of EPS
d5: Relation of user-perceived response time to error measurement
d6: The generation of random, binary, unordered trees
d7: The intersection graph of paths in trees
d8: Graph minors IV: Widths of trees and well-quasi-ordering
d9: Graph minors: A survey

Table 3.2: Sample data set from Deerwester et al. (1990). Underlined words occur in
more than one title and are selected for indexing.

d1 d2 d3 d4 d5 d6 d7 d8 d9
computer 1 1 0 0 0 0 0 0 0

human 1 0 0 1 0 0 0 0 0
interface 1 0 1 0 0 0 0 0 0
response 0 1 0 0 1 0 0 0 0
survey 0 1 0 0 0 0 0 0 1
system 0 1 1 2 0 0 0 0 0
time 0 1 0 0 1 0 0 0 0
user 0 1 1 0 1 0 0 0 0
eps 0 0 1 1 0 0 0 0 0

trees 0 0 0 0 0 1 1 1 0
graph 0 0 0 0 0 0 1 1 1

minors 0 0 0 0 0 0 0 1 1

Table 3.3: Term-by-document matrix B for the sample data set from table 3.2

of a frequency matrix in standard vector space can only return values in the range [0, 1], because
in the traditional VSM all vectors lie within the positive quadrant. The values in any frequency
matrix are always positive – a negative frequency count is not possible. A cosine of 0 for two
vectors in standard vector space means that their distance is maximal which implies that they
are maximally dissimilar. In contrast to VSM, values in an LSA matrix can be negative so the
cosine of two vectors in a LSA space can have a value anywhere in the range of [−1, 1].

Using the rows of the term-by-document matrix B shown in table 3.3 the cosine similarity
for all term pairs in standard vector space were calculated and are given in table 3.4. A cell in
that table gives the similarity between the two corresponding terms. The terms “system” and
“EPS” (coloured in green in the tables below) co-occur three times in the sample data set and
their cosine is 0.87, the highest measured in this example (apart from identical terms). The
terms “human” and “user” (coloured in red in the tables below) have a cosine of 0, the lowest
value possible in the standard VSM, as they never co-occur directly.

The standard VSM only takes direct co-occurrence hereinafter referred to as first order co-
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computer 1.00 0.50 0.50 0.50 0.50 0.29 0.50 0.41 0.00 0.00 0.00 0.00
human 0.50 1.00 0.50 0.00 0.00 0.58 0.00 0.00 0.50 0.00 0.00 0.00

interface 0.50 0.50 1.00 0.00 0.00 0.29 0.00 0.41 0.50 0.00 0.00 0.00
response 0.50 0.00 0.00 1.00 0.50 0.29 1.00 0.82 0.00 0.00 0.00 0.00
survey 0.50 0.00 0.00 0.50 1.00 0.29 0.50 0.41 0.00 0.00 0.41 0.5
system 0.29 0.58 0.29 0.29 0.29 1.00 0.29 0.47 0.87 0.00 0.00 0.00

time 0.50 0.00 0.00 1.00 0.50 0.29 1.00 0.82 0.00 0.00 0.00 0.00
user 0.41 0.00 0.41 0.82 0.41 0.47 0.82 1.00 0.41 0.00 0.00 0.00
eps 0.00 0.50 0.50 0.00 0.00 0.87 0.00 0.41 1.00 0.00 0.00 0.00

trees 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.67 0.41
graph 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.67 1.00 0.82

minors 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.41 0.82 1.00

Table 3.4: Cosine term similarity for the sample data set from table 3.2 in standard vector
space.

occurrence into account. LSA on the other hand takes more information into account and pro-
vides a better representation of term relations. Table 3.5 shows the cosine values for term-to-
term similarities calculated in LSA space from the matrix B in table 3.3. Thus tables 3.4 and
3.5 show the similarity scores for the same data once calculated in standard vector space (table
3.4) and once in LSA space (table 3.5).
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computer 1.00 0.21 0.85 0.99 0.85 0.30 0.99 0.99 0.25 -0.05 0.04 0.07
human 0.21 1.00 0.68 0.06 0.11 0.99 0.06 0.22 0.99 -0.01 -0.01 -0.02

interface 0.85 0.68 1.00 0.77 0.63 0.75 0.77 0.86 0.72 -0.15 -0.09 -0.06
response 0.99 0.06 0.77 1.00 0.83 0.16 1.00 0.99 0.11 -0.08 0.01 0.05
survey 0.85 0.11 0.63 0.83 1.00 0.20 0.83 0.82 0.15 0.48 0.56 0.59
system 0.30 0.99 0.75 0.16 0.2 1.00 0.16 0.31 0.99 0.005 0.003 0.003

time 0.99 0.06 0.77 1.00 0.83 0.16 1.00 0.99 0.11 -0.08 0.01 0.05
user 0.99 0.22 0.86 0.99 0.82 0.31 0.99 1.00 0.27 -0.09 -0.01 0.02
eps 0.25 0.99 0.72 0.11 0.15 0.99 0.11 0.27 1.00 -0.02 -0.02 -0.03

trees -0.05 -0.01 -0.15 -0.08 0.48 0.005 -0.08 -0.09 -0.02 1.00 0.99 0.99
graph 0.04 -0.01 -0.09 0.01 0.56 0.00 0.01 -0.01 -0.02 0.99 1.00 0.99

minors 0.07 -0.02 -0.06 0.05 0.59 0.003 0.05 0.02 -0.03 0.99 0.99 1.0

Table 3.5: Cosine term similarity for the sample data set from table 3.2 in LSA space

In LSA co-occurrences of higher order are taken into account. For example “human” and
“user” have a similarity value of 0.22 in the LSA space instead of 0 in the VSM. The rela-
tion between the terms are second-order via co-occurrences with “system”: “human” co-occurs
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twice with “system” and “system” co-occurs twice with “user”. Other co-occurrence chains
are: “human-interface-user”, “human-computer-user”, “human-EPS-user”.
An example of third order co-occurrence is the pair “trees” (coloured in blue) and “system”.
They receive a similarity value of 0.005 in the LSA space instead of 0 in standard VSM. Their
co-occurrence chain is “trees-graph-survey-system”. In the standard vector space, the two lat-
ter pairs receive a similarity value of 0 and are both marked as not similar. In LSA space
these pairs are discriminated, they receive different cosine values based on their different co-
occurrence patterns. LSA allows one to find more relationships between terms and to get a more
differentiated view on the data set and its underlying relations. To calculate these underlying
relations Singular Value Decomposition (SVD) is used.

3.2.2 Introduction to Singular Value Decomposition

Singular Value Decomposition (SVD) is a method from the field of linear algebra. The purpose
of SVD is to diagonalize any t × d matrix A. The diagonalization corresponds to a transition
to a new coordinate system (Lang and Pucker, 1998). This transition brings forth the latent
semantic structure of a document set.

To explain the effect of SVD, I will use an example from image compression, where SVD
is used to optimize the relation between image quality and file size. Figure 3.2 shows pictures
of a clown with different quality.

Figure 3.2: SVD in image compression: View the m× n image as a matrix. The rank of
this matrix was reduced from r = 200 to k = 1, 2, 5, 15, 50. Hardly any difference is visible
between the rank k = 50 approximation of the image and the original, but the file size is
reduced from m× n to k(m+ n). (Source: Persson (2007))

Any picture can be seen as a matrix, where each cell contains a number that corresponds to
a colour or a grayscale. The upper left image in figure 3.2 shows the original picture, a matrix
of rank r = 200. The rank (r) of a matrix is the smaller of the number of linear independent
rows and columns. SVD is used to reduce the rank and thereby the file size of the image. If the
rank is reduced to k = 1 or k = 2 the image of the clown is not recognizable. The clown can
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be recognized in the rank 15 (k = 15) approximation but the image is blurred. At rank k = 50

hardly any difference between the approximation and the original image can be detected, but
the file size is reduced from m× n to k(m+ n).

The clown can be recognized because SVD emphasizes the most essential features and
information while unimportant details are suppressed. On the highest level of abstraction (rank-
1 approximation) only the very basic structure of the image is depicted. SVD ranks the features
by importance for the image. By reducing the rank to k, only the first k features are kept.

One aims to find the optimal rank approximation where all and only the important informa-
tion is shown. If the important features are not all captured the picture cannot be recognized,
whereas if too many features are kept the data structure is unnecessarily large.

In the example in section 3.2.1 SVD finds concepts and relations between terms in the term-
by-document matrix B and ranks them by importance. Only the k most important concepts are
kept, and the term similarity is calculated on the basis of the reduced matrix. The benefit of
this reduction to the optimal rank-k approximation is that the term similarity calculation is only
based on the most characteristic features of the document collection at hand. The noise that
blurs the clear view on the hidden relations is suppressed.

Mathematically speaking the characteristic concepts of a term-by-document matrix are its
eigenvectors. First I will explain Eigenvalue Decomposition (EVD) for square matrices from
which SVD for rectangular matrices is derived. The goal of EVD is to find eigenvectors ~x that
point in the same direction as Ax, i.e., vectors that satisfy equation 3.6.

A~x = λ~x (3.6)

Here λ is an eigenvalue, which determines the scaling of the corresponding eigenvector ~x. For
example the eigenvectors for the following matrix C of rank 3 are ~x1, ~x2 and ~x3:

C =

2 0 0

0 9 0

0 0 4

 ⇒ ~x1 =

0

1

0

 ~x2 =

0

0

1

 ~x3 =

1

0

0


λ1 = 9 λ2 = 4 λ3 = 2

In the case of a diagonal matrix the eigenvectors are the canonical unit vectors, i.e., the vectors
spanning the coordinate system. Equation 3.6 can be solved by subtracting λ~x to obtain:

(A− λI)~x = 0 (3.7)

Here I is the unit matrix – a diagonal matrix where the main diagonal consists only of ones. If
this equation has a non-trivial solution, then A − λI is not invertible, which means there is no
B−1 = (A − λI)−1 that fulfils B−1B = BB−1 = I. From that it follows that the determinant
of (A− λI) has to be 0:

det(A− λI) = 0 (3.8)
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For a detailed derivation of this transformation see Strang (2003). With this equation eigenval-
ues λ can be calculated since det(A− λI) will result in a polynomial of rth order.

The procedure described here is called Eigenvalue Decomposition (EVD) since it can only
be applied to certain classes of square matrices. In IR most term-by-document matrices are
rectangular hence the generalization for rectangular matrices, Singular Value Decomposition
(SVD), is used. SVD and EVD are related. EVD decomposes a square matrix C into two
submatrices Q and Λ where Q represents the eigenvectors and the eigenvalues are listed in
descending order in matrix Λ:

C = QΛQ−1 (3.9)

In contrast to a square matrix a rectangular matrix has two sets of eigenvectors, the right singular
vectors and the left singular vectors. SVD decomposes any rectangular t×dmatrix A into three
submatrices T, S and D (figure 3.3). The left singular vectors are represented by T, the right
singular vectors by D.

t
A

d

= t
T

r

r S

r

r DT

d

Figure 3.3: Singular Value Decomposition: A is a t× d matrix, where t is the number of
index terms, d the number of documents indexed, and r the rank of the matrix A.

Any rectangular matrix A is squared by multiplying it by AT . The eigenvectors of AT =

AAT are the left singular vectors of A and the eigenvectors of AD = ATA are the right
singular vectors of A. The eigenvectors and the eigenvalues for these auxiliary matrices can be
calculated by EVD as described above.

Singular values are the square roots of the common eigenvalues of AT and AD and are
written in descending order in S. The eigenvectors in T and D are ordered correspondingly.

Only when the term-by-document matrix is decomposed into these three submatrices is it
possible to reduce the number of dimensions of the semantic space and thereby the number of
concepts (or features). In that case only the first k singular values in S and the corresponding
vectors in T and D are kept. This number of remaining dimensions (k) is a crucial value for
the performance of any LSA based application. If too many dimensions are kept, the latent
semantic structure cannot be revealed because the documents and words are not projected near
enough to each other and too much noise is left. If k is too small then too many words and/or
documents will be superimposed on one another, destroying the latent semantic structure.

The three sub-matrices Tk, Sk and Dk describe the coordinate system, the semantic space
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Figure 3.4: Reduced Singular Value Decomposition: A is a t × d matrix, where t is the
number of index terms, d the number of documents indexed, r the rank of the matrix A,
and k the number of dimensions kept.

for a document collection. The derived concepts or topics of the document collection are de-
picted in Dk, and the word distribution patterns in Tk. In spatial terms the rows of the matrices
Tk and Dk are the coordinates of points representing the terms and documents in reduced k
dimensional space. The matrix Sk is used to rescale the axes in order to be able to compare
different objects to each other.

Depending on the type of similarity calculation required, the submatrices are multiplied
with S. For term-to-term similarity calculation the vectors of the matrix CTk = TkSk are
used. To compare documents with each other the distances between the vectors of the matrix
CDk = DkSk are calculated. If the task is to compare a term to a document the vectors of the
matrices CTD1k = TkS

1
2
k and CTD2k = DkS

1
2
k are used to calculate the cosine similarity.

For my experiments I use the scaled space CDk = DkSk. Since I explore the potential of LSA
in the field of sentence clustering for MDS, I will call this space the clustering space. With each
k (number of remaining dimensions) a different clustering space is formed.

Yu et al. (2002) summarizes the advantages of LSA as follows:

“The SVD algorithm preserves as much information as possible about the relative
distances between the document vectors, while collapsing them down into a much
smaller set of dimensions. In this collapse, information is lost, and content words
are superimposed on one another. Information loss sounds like a bad thing, but
here it is a blessing. What we are losing is noise from our original term-document
matrix, revealing similarities that were latent in the document collection. Similar
things become more similar, while dissimilar things remain distinct. This reductive
mapping is what gives LSI its seemingly intelligent behaviour of being able to
correlate semantically related terms. We are really exploiting a property of natural
language, namely that words with similar meaning tend to occur together.”

In contrast to the VSM the dimensions of the vector, which represents a sentence, do not corre-
spond to a term but rather to a concept or a word usage pattern. Thus the similarity calculation
for sentence clustering using LSA is not only based on word matching but on latent semantic
relations of the terms.
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3.3 Data set

The data set that is used throughout the experiments in this thesis and that was given to hu-
man annotators was compiled from DUC sets. The document sets were created by DUC for
different challenges such as single-/multi-document summarization, topic focused summariza-
tion, or update summaries. For my research I chose six document sets from various DUC from
2002, 2003, 2006 and 2007. DUC clusters are categorized in different types of clusters. I chose
document sets from the following categories:

Single natural disaster Sets of documents that describe a single natural disaster event and
were created within a seven-day window.

Single event Sets of documents that describe a single event in any domain and were created
within a seven-day window.

Biography Sets of documents that present biographical information mainly about a single in-
dividual.

These categories were chosen because document sets from these groups can be summarized rel-
atively easily by one generic summary. Other document sets that, e.g., describe multiple distinct
events of a single type were not used for my research as they were designed for topic focused
summarization or update summarization. From six DUC clusters of documents I extracted sets
of sentences that met certain requirements and constraints.

Particularly the newer document clusters (e.g., from DUC 2006 and 2007) contain many
documents and therefore many sentences. To build good sentence clusters, human annotators
have to compare each sentence to each other sentence and maintain an overview of the topics
within the documents. Because of human cognitive limitations the number of documents and
sentences had to be reduced. For my experiments I defined a set of constraints for a sentence
set:

1. A sentence set must consist of sentences from at least 5 and not more than 15 documents
from one DUC document set.

2. A sentence set should consist of 150 – 200 sentences.

3. If a DUC set contains only 5 documents all of them are used to create the sentence set, even
if that leads to more than 200 sentences.

4. If a DUC set contains more than 15 documents, only 15 documents are used for clustering
even if the number of 150 sentences is not reached.

To obtain sentence sets that comply with these requirements, I designed an algorithm that takes
the number of documents in a DUC set, the date of publishing, the number of documents pub-
lished on the same day, and the number of sentences in a document into account. If a document
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set includes articles published on the same day they were given preference, because they tend
to be more similar to each other and have the same standard of knowledge, e.g., they do not
tend to vary in numbers of casualties. Furthermore shorter documents (in terms of number of
sentences) were favoured (for more details see section 3.4). The properties of the resulting
sentence sets are listed in table 3.6.

Name DUC DUC id Docs Sent Type Topic

EgyptAir 2006 D0617H 9 191 single event Crash of the EgyptAir Flight 990
Hubble 2002 d116i 6 199 single event Launch of Hubble space telescope

Iran 2002 d103g 9 185 natural disaster Earthquake in northern Iran in 1990
Rushdie 2007 D0712C 15 103 biography “Death sentence” on Salman

Rushdie proclaimed by Iran
Schulz 2003 d102a 5 248 biography Death of Charles Schulz,

creator of the Peanuts
Volcano 2002 d073b 5 162 natural disaster Eruption of Mount Pinatubo

Table 3.6: Details of sentence sets

3.4 Implementation

For the experiments described in this thesis I used BOSSEClu. BOSSE, which is implemented
in Python, was developed as part of my earlier work at the University of Heidelberg (Geiß,
2006) as a local search engine for Wikipedia articles using Latent Semantic Indexing (LSI). For
the research described in this dissertation I adapted BOSSE in order to process DUC document
sets and to create sentence clusterings from them. BOSSE was also extended to process other
corpora like MEDLINE, Cranfield, and MSRPC. I changed the internal structure of BOSSE to
make it more efficient in terms of time and memory. I introduced new classes and changed the
way matrices and information about terms, sentences and documents are stored. I also added
the VSM. A user calling BOSSE can specify whether the standard vector space or the LSA space
should be used for IR or clustering. This makes it easier to compare LSA and VSM and assures
that the same indexing and weighting schemes are used.

To distinguish the new version of BOSSE from the old, I refer to it as BOSSEClu. Figure 3.5
shows the system framework of BOSSEClu, which is composed of two parts: preparation and
clustering.

3.4.1 Preparation

During preparation documents are read in and split into sentences. Sentence sets are created
and indexed. Term-by-sentence matrices are built and SVD is performed.
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Figure 3.5: System framework of BOSSEClu

Sentence boundary detection

To split the documents of a document set into sentences, BOSSEClu uses the sentence bound-
ary detector from RASP (Briscoe et al., 2006). After all documents from the sets have been
segmented, sentence sets are generated.

Sentence set generation

Some constraints for a sentence set were defined (for details see section 3.3). To obtain sentence
sets that comply to these specifications I designed an algorithm which I will outline here. The
algorithm takes the date a document was published, the agency it was published by and the
number of sentences it contains into account. First the documents from a set are sorted by
date and then ranked. The top ranks are taken by documents that were published on the same
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day. They are followed by articles published on consecutive days. There might be several
blocks of consecutive days on which articles were published. From each of these blocks the
shortest document for each agency is selected. The remaining documents are sorted by number
of sentences and are added to the rank list. This approach ensures that as many different articles
(from different agencies) as possible are present in a sentence set and that the articles have
a lot of information in common. By giving preference to documents published on the same
day or on consecutive days it is ensured that the authors had a similar knowledge base. Thus
the proportion of redundant information is maximized. The sentences from the documents are
added to the sentence sets according to the rank list. Before sentences are added, the algorithm
checks whether, by including all the sentences from a document, the maximum number of
documents or the maximum number of sentences in a sentence set is exceeded. Only complete
articles are added to the sentence sets. Regardless of the number of sentences already in the
sentence set, documents (more particularly their sentences) are added to the sentence set until
the minimum number of documents is reached. The sentences in a set are then ordered by date
before they are given to human annotators.

Indexing

After the sentence sets have been created, a list of keywords for each sentence set is extracted
using the Python Natural Language Toolkit (NLTK) (Bird et al., 2009). During indexing stop
words5 are removed. The list of keywords is also filtered to include only keywords that appear
in more than one sentence. The list is extended or filtered in accordance with the vocabulary
option chosen. There are nine different options to choose from (see section 4.2.2 for details).
Some options restrict the vocabulary to nouns and verbs or to nouns only. To extract the word
class for the index keywords, the part-of-speech (PoS) tagger from RASP (Briscoe et al., 2006)
is used. For other vocabulary options, collocations are extracted from the sentence sets and
added to the index. Collocations are groups of words that often appear consecutively within
one/all sentence sets. To extract collocations of two and three words, the collocation module
of NLTK (Bird et al., 2009) is used. Examples for extracted collocations from the dataset are
Charlie Brown, United States, Salman Rushdie and death sentence.

TSM creation

Once the indexing is finished, term-by-sentence matrices (TSM) are built according to the space
option specified by the user (for more details see section 4.3). The cells of the matrices include
ntf -isf weighted frequencies of occurrence of keywords in sentences. The isf value is also
used to filter out keywords that appear in almost all sentences of a sentence set.

5The stop word list created for the SMART information retrieval system (Salton, 1971b) was used.
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SVD

After generating the TSM(s), SVD is applied (section 3.2). In BOSSEClu SVDLIBC (Rohde,
2008) is used to calculate the singular value decomposition of the TSM(s). The matrices are
truncated in accordance with the parameter k specified by the user. The three resulting subma-
trices Tk, Sk and Dk are saved to files alongside all other relevant information.

3.4.2 Clustering

For clustering sentences two steps need to be carried out: clustering space creation and sentence
clustering.

Cluster space creation

First the cluster space needs to be calculated. This space is created using the three truncated
submatrices from SVD. Depending on what kind of objects will be clustered (terms, sentences,
terms and sentences) the appropriate LSA space has to be calculated. For sentence clustering
the space is given by CDk = DkSk.

Sentence clustering

For sentence clustering, BOSSEClu uses an implementation of a hierarchical agglomerative clus-
tering algorithm (HAC) called hcluster (Eads, 2008a), which is a Python library whose interface
and range of functions are comparable to those of MATLAB R©’s Statistics Toolbox. All param-
eters specified in the following section 3.5 can be passed to BOSSEClu. The only addition to
that implementation for my research is that only clusters that contain sentences from different
documents are used, thus the clusters created by hcluster are filtered. The clusters that contain
sentences from only one document are added to the clustering as singletons. This feature was
added since the human annotators were given the rule that each cluster they create must contain
sentences from at least two different documents.

The advantage of my own implementation is that I can easily change the source code and can
add all cluster options I want to investigate. I retain full control of the indexing, decomposition
and clustering process.

3.5 Clustering algorithm

Clustering is a method of unsupervised learning. Clustering is defined as an assignment of
objects into clusters such that the clusters are internally as coherent as possible but clearly dis-
tinguishable from each other. That is to say the objects within the same cluster should be similar
in some sense and objects in one cluster should be different to objects from other clusters.
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There are two types of clustering methods – hard and soft. In soft clustering an object
can belong to several clusters; a probability of a sentence belonging to a cluster is given. On
the other hand in hard clustering a sentence can belong to exactly one cluster. For sentence
clustering in MDS, I use a hard clustering algorithm.

Clustering algorithms can also be divided into two groups: (i) hierarchical and (ii) parti-
tional (Manning and Schütze, 1999). Partitional or non-hierarchical algorithms (e.g., k-means
clustering) start out with k randomly selected centres of clusters. This k is different to the k in
LSA. Here k represents the number of clusters. These randomly selected centres of clusters are
called seeds. Each object is then assigned to its nearest seed. When all objects are assigned to a
seed, the cluster centres called centroids are computed. A centroid of a cluster is the average of
all points in a cluster. Each object is assigned to its nearest centroid and then the centroids are
recomputed. These latter steps are repeated until a convergence criterion is met. One disadvan-
tage is that when the algorithm is run on the same data set several times the results may vary,
due to the fact that the seeds are randomly selected. Another drawback of this approach is that
the number of clusters has to be set a priori. This is not feasible for MDS. There is no way of
knowing a priori how many topic clusters there are in a cluster of documents.

Hierarchical clustering algorithms produce trees of clusters also known as cluster hierarchies
or dendrograms (see figure 4.1 for an example). Each node represents a cluster consisting of all
the objects of its descending nodes (its children). That is, each node (except for the root node)
is a subclass of its parent node. The leaves of the tree represent the individual objects to be
clustered, here sentences. There are two approaches to hierarchical clustering, agglomerative
clustering and divisive clustering. The divisive or top-down algorithm starts with one cluster
containing all objects. In each step the cluster that is least cohesive is determined and split.
Agglomerative clustering or bottom-up clustering starts with leaves. Each leaf is interpreted
as a separate cluster; such clusters containing only one object are called singletons. In each
iteration the two clusters with the maximum similarity (or minimum distance) are merged. The
algorithm stops when one cluster is left containing all objects.

To determine the similarity (or distance) between clusters it has to be defined (i) what the
distance between two clusters is (linkage criteria) and (ii) how the distance is calculated (dis-
tance metric). There are three commonly used linkage criteria:

Single link The distance of two clusters is equal to the distance between the two closest (most
similar) objects in the clusters.

Complete link The distance of two clusters is equal to the distance between the two further-
most (most dissimilar) objects in the clusters.

Average link The distance of two clusters is equal to the average distance between the objects.

Common distance metrics are:
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Cosine metric The similarity of two sentences is given by the cosine of the angle between the
two vectors describing the sentences.

Euclidean distance The similarity of two sentences is the length of a line segment connecting
two vectors describing the sentences.

Jaccard distance The similarity of two sentences is the number of different entities divided by
the number of shared entities.

For sentence clustering I used a Python implementation of the hierarchical agglomerative
clustering (HAC) algorithm called hcluster (Eads, 2008a). The Python library hcluster pro-
vides functions to generate hierarchical clusterings from distance matrices computed from ob-
servation vectors. It also offers visualization of the clusterings with dendrograms and different
methods of splitting the cluster tree into flat clusters (Eads, 2008b).
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Chapter 4

Parameters in sentence clustering

Anyone who doesn’t take truth seriously in
small matters cannot be trusted in large ones
either.

ALBERT EINSTEIN

This chapter discusses various parameters that need to be thought of when clustering sen-
tences in general and when using LSA in particular. First the parameters that need to be set
for the hierarchical clustering algorithm are examined in section 4.1. In section 4.2 I will dis-
cuss the issue of creating an index vocabulary. The idea of different sizes of an LSA space is
explained and discussed in section 4.3. The important role of the LSA parameter k and how it
might influence results is discussed in section 4.4.

4.1 Clustering algorithm parameter

As described in section 3.5 a hierarchical agglomerative clustering algorithm (HAC) was used
for automatic sentence clustering. There are different parameters that can influence the quality
of sentence clusters. In section 3.5 I listed several linkage criteria and distance metrics. I will
now experimentally determine which of them are appropriate for sentence clustering. The Mi-
crosoft Research Paraphrase Corpus (MSRPC) (Dolan et al., 2004; Dolan and Brockett, 2005)
was used for this purpose. It was originally designed for research on paraphrase detection. The
corpus contains pairs of sentences, which are annotated for equivalence. This corpus was use-
ful because a gold standard for sentence clustering can be easily created from it. Although the
corpus was created for research on paraphrasing, it is a good starting point for evaluating the
clustering capabilities of LSA, since a pair of paraphrases is a special case of a sentence cluster.
It is also a good opportunity to find optimal settings for some clustering parameters.

The MSRPC was created from 11,162 document clusters with a total of 117,095 news ar-
ticles from thousands of news sources. Different automatic heuristics were applied to find
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paraphrases within these clusters. After 49,375 pairs of possible paraphrases were found, a
classifier, which uses feature classes such as string similarity features, morphological variants
and WordNet lexical mappings, was applied. The resulting data set consists of 20,574 pairs,
from which 5,801 were randomly chosen to be evaluated by human judges. 67% of the pairs
were rated as semantically equivalent. The human-evaluated segment of 5,801 paragraph pairs
was then split into the MSRPC training and the MSRPC test set containing 4,076 and 1,725
sentence pairs respectively.

I derived a gold standard for sentence clustering from the resulting sentence set (hereinafter
called MSRPC GS) by following transitive chains. The assumption is that, if sentence A is a
paraphrase of sentence B and sentence B is a paraphrase of sentence C, then the sentences A
and C, even if they have not been annotated as paraphrases by the judges, must at least have
something in common or have the same topic. Since all 5,801 sentence pairs were rated as sim-
ilar by the classifier, there is a good chance that even sentence pairs not marked as paraphrases
are related. Hence these pairs were also used for the creation of MSRPC GS. Only clusters
containing more than two sentences are included in MSRPC GS. According to general nomen-
clature in clustering the clusters in the gold standard are called classes as opposed to clusters
in a clustering automatically generated by a system. For the MSRPC training set this approach
resulted in 277 classes containing 889 sentences and for the MSRPC test set in 50 classes with
155 sentences.

The MSRPC training corpus was used to compare the different distance metrics (cosine,
euclidean), linkage criteria (single link, complete link and average link). The best parameter
combination is the cosine metric combined with the average linkage criterion.

4.1.1 Fine-tuning the clustering algorithm

The only parameter that was not determined by this preliminary experiment was the flattening
criterion. In a hierarchical cluster tree, any two objects of the data set are linked together at some
point in the algorithm. An example of a hierarchical cluster tree is shown in figure 4.1. The
numbers along the horizontal axis represent the indices of the sentences in a sentence set. The
numbers along the vertical axis represent the distance between the objects (distance = 1-cos).
Beginning at the leaves (here the sentences) the objects in the tree are linked to other objects at
different heights ending in one root object. The links between objects are represented by forks,
i.e., two vertical lines connected by a horizontal line. The height of a link indicates the distance
between the two connected objects. Two objects whose link is low are nearer to each other (and
thereby more similar) than two objects with a higher link. The height of a link between two
objects is known as the cophenetic distance between two objects: it can range from 0 for the
minimum distance between the objects and 1 for the maximum distance between two objects.

For sentence clustering in MDS, partitional clusters (also known as flat clusters) are needed.
The gold standard, which is used to evaluate the sentence clusterings, also consists of flat clus-
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Figure 4.1: Dendrogram for a sample data set

ters, where each sentence can belong to exactly one cluster (hard clustering).

In order to separate the cluster tree into flat clusters a cut-off criterion is required, which de-
termines where to cut the tree. This cut-off criterion can be the number of clusters (maxclust).
If maxclust = 2 the tree is partitioned into two clusters. In the dendrogram in figure 4.1 this
is visualized by the dotted horizontal line that intersects with two vertical link lines. The dotted
line separates the data into two clusters. All objects below the left link line belong to one cluster
consisting of objects 0 and 1. All objects below the right line form the second cluster [4, 2, 3].
If on the other hand maxclust = 3 the tree is cut at the lower dotted line, which results in three
clusters [0, 1][4][2, 3]. However, since in sentence clustering for MDS the number of clusters is
not known a priori, this cut-off criterion is not a feasible way of producing partitional clusters.

Another way to separate the cluster tree into flat clusters is to use a threshold for the cophe-
netic distance as a cut-off criterion. The cluster tree is then cut at a threshold t represented by
dashed lines in figure 4.1. All links with a height > t, i.e., above the dashed line, are ignored
and only the links below the line (where height ≤ t) are kept. In figure 4.1, t = 0.25 results
in the tree being split into four clusters: one cluster consisting of sentence 2 and 3 and three
singleton cluster [0], [1] and [4], whereas t = 0.5 results in the tree being split into three clusters
[[0, 1][4][2, 3]], a division which is identical to the division using maxclust = 3. If t = 0.75
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there are only two clusters [0, 1] and [4, 2, 3]. With this criterion the clustering algorithm can
be adjusted to create different numbers of flat clusters even if the desired number of clusters is
unknown at runtime.

Later I will test four values of t (0.10, 0.25, 0.50, 0.75).

4.2 Vocabulary

The selection of terms for the index vocabulary is an important step in any vector space based
application because terms are the entities (i) which can be searched for (IR) and (ii) from which
the word usage patterns are built (LSA).

An index vocabulary consists of all the terms (words, n-grams, numbers, acronyms etc.) that
are chosen to be a keyword of a sentence. Every term is represented by a weighted frequency
vector noted down as a row in the TSM. The weight represents the importance of that term to
a given document (or sentence as in the case of sentence clustering). It is often based on the
frequency of the term.

4.2.1 Index vocabularies in IR

There are many different ways to create an index vocabulary. Unfortunately several authors do
not describe in detail how they created the indexing vocabulary or if term weighting was used.
Thus the information provided is not sufficient for reimplementation purposes. IR researchers
use many different indexing techniques. I collected results for two standard test collections,
MED and Cranfield II. The MED collection (also called MEDLARS 1033) consists of 1033
medical abstracts and 30 queries (Salton et al., 1982; Salton, 1971a). The Cranfield II col-
lection (Cleverdon, 1967) includes 1400 papers on aeronautics and 225 queries. These test
collections are widely used to evaluate IR implementations and algorithms. Unfortunately there
are no standard indices or indexing procedures, which results in different indices and reduces
the comparability of results.

Tables 4.1 and 4.2 give an overview of the different characteristics of indices from IR lit-
erature. For the MED corpus I selected three systems that use LSI. Dumais (1990) and Kon-

Article #terms Stemmer Stop list Weighting k P

Dumais (1990) 5831 no SMART tf-idf 100 0.67
Dumais (1990) 5831 no SMART log E 100 0.72
Zha and Simon (1999) 3681 - - - 100 0.66
Kontostathis (2007) 5831 no SE log E 75 0.72

Table 4.1: Differences in indexing methods for MED
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tostathis (2007) seem to use the same index, resulting in similar precision (P) when the log
entropy (logE) weighting scheme is used, although they use different number of dimensions
(k). Zha and Simon (1999) use considerably fewer terms and they do not specify if a stemmer,
stop word removal or weighting were used. For the Cranfield II corpus the situation is similar.

Articles # terms Docs Queries Stemmer Stop list Weighting k P

Dumais (1990) 4486 924 100 no SMART tf-idf 100 0.40
Kontostathis (2007) 3932 1400 225 no SE log E 185 0.45
Hull (1994) ? 1399 219 - - - 200 0.45
Jiang and Littman (2000) 3763 1400 225 - - - 300 0.41

Table 4.2: Differences in indexing methods for Cranfield II

Hull (1994) does not specify how many terms were used to build the TDM or whether a stem-
mer, stop word removal or term weighting were used. The variance in k is striking, whereas the
resulting precision (P ) always lies in a range of 0.4 and 0.45.

In the following I will describe two options for extracting an index vocabulary – stop word
removal and stemming in more detail. To analyze their influence on the retrieval performance I
will test them on the two standard test collections described above using my system BOSSEClu.
I will compare the retrieval performance of different index vocabularies, but all of them include:

• all terms separated by white spaces

• terms that occur in at least two documents

• only year dates (all other numbers are deleted)

• frequencies weighted using ntf − idf

Other restrictions are explained where they apply. I use the 3-point-average precision to measure
the performance of my system at different numbers for k. For the 3-point-average precision (3-
pt-P) the precision of the retrieval system for a given query is averaged at three defined recall
levels. Table 4.3 show the results of the experiments.

MED corpus (1033 documents) Cranfield II (1398 documents)
# terms k 3-pt-P VSM 3-pt-P # terms k 3-pt-P VSM 3-pt-P

standard 5810 50 0.70 0.51 4039 250 0.37 0.36
+ stemmer 4244 67 0.71 0.51 2548 200 0.38 0.38
- stop word removal 6141 75 0.63 0.50 4355 400 0.35 0.35

Table 4.3: Summary of experiments on MED and Cranfield II using BOSSEClu
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Stop word removal

The idea of a stop word list is to remove all common words such as “he”, “a” or “who”, that
do not carry significant information. Gerard Salton and Chris Buckley created a stop word list
for their SMART information retrieval system (Salton, 1971b). This list6 is widely used and
includes 571 common English words.

The results show that not removing words listed on the stop word list results in a decrease
of performance of 10% for MED and 5.4% for the Cranfield II corpus.

Stemming

Most LSA systems do not use stemming. Dumais (1990) states that the improvement using a
stemmer only lies in the range of 1%-5% . In some cases stemmers can even decrease results.
On the other hand Frakes (1992) states that there is no evidence that stemming can degrade
retrieval performance. He argues that the effect of stemming is dependent on the nature of the
vocabulary, therefore a stemmer improves the retrieval performance for some test collections
more than for others. For my experiments I used the Porter stemmer (Porter, 1980) and the
raw frequencies in the TDM were weighted using the ntf -idf weighting scheme (see section
3.1.1). Only terms that are not listed on a modified SMART list of stop-words were included
in the index. All numbers apart from years were deleted. The results of my experiments using
the Porter stemmer with Bosse on Cranfield II and MED regarding the effect of stemming can
be seen in the first two rows of table 4.3. Using the porter stemmer results in an increase in
LSA retrieval performance of 1.4% for the MEDLINE corpus and 2.7% for the Cranfield II
collection. However since the increase is marginal and other researchers state that stemming
might even decrease retrieval performance I chose not to use stemming for the creation of an
index vocabulary.

Conclusion

If an experiment with VSM and LSI is to be repeatable and its results are to be comparable,
it is important to specify all steps and tools leading to the index vocabulary and TDM used
for the experiments. As a result I chose the standard indexing described above (no stemming,
stop word removal, keeping year and removing all other numbers, using the ntf -idf weighting
scheme and keeping only these words that occur in more than one document). This works well
and offers a good compromise between good average precision and run time.

6It is included NLTK and is also available at ftp://ftp.cs.cornell.edu/pub/smart/english.
stop.
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4.2.2 Varying vocabularies for sentence clustering

The selection of index terms, also known as index vocabulary, is an important step for any
vector space based application. In LSA only the selected terms can be used to generate word
usage patterns and thereby reveal the underlying concepts of the sentence sets and the similarity
between the sentences. If the keywords selected do not represent the meaning or aboutness
of the sentences properly the similarities of the sentences cannot be determined reliably and
sentence clustering might produce inadequate clusters. Therefore the selection and processing
of index terms is a crucial step and will be examined in more detail.

It is often difficult to find evidence in research papers of how the index vocabulary was ob-
tained, what kind of terms were used (nouns, words, multi-word expressions, n-grams, numbers
etc.) and how they were edited. In section 4.2, I gave a short overview of some options in
relation to index vocabulary creation. The results from these experiments show that the use of a
stemmer results only in marginal improvement of retrieval results, if any at all. Removal of stop
words however increases the retrieval performance considerably. As Dumais (1990) reported,
weighting has a positive effect on information retrieval. Following these results I will remove
common stop words from the index vocabulary and the frequency of a term in a sentence will
be weighted using the ntf -isf weighting scheme since the preliminary experiments showed that
it outperforms the tf -isf scheme.

In previous research some other options for selecting index terms were introduced. It is
claimed that the nouns of a sentence carry most of its meaning and that they are the main
characteristics to distinguish between sentences or documents (Baeza-Yates and Ribeiro-Neto,
1999). Thus many IR systems only use nouns as index terms. This trend is also recognizable
in summarization. Barzilay and Elhadad (1997) for example only select nouns and noun com-
pounds for candidate terms for lexical chains. Bouras and Tsogkas (2008) reports that boosting
weights of nouns results in an increase in summarization performance. The most effective fea-
tures for finding similarity between short passages of text are simplex noun phrases overlap and
noun overlap (Hatzivassiloglou et al., 1999). Other authors do not give information on which
terms were selected as keywords. Aliguliyev (2006) only speaks of words/terms occurring in a
document. Hachey et al. (2006) used 1000 content-bearing terms.

From the example given above it can be seen that there is no consensus on which terms
to use for similarity measurement in summarization or text similarity calculation. Therefore
I examined the influence of different index vocabularies on sentence clustering (and therefore
sentence similarity measurement) for MDS. I chose eight different strategies of keyword selec-
tion:

SV: all tokens separated by white spaces, longer than three characters and not on the stop word
list

NUM1: like SV but all numbers are replaced by the string #num
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NUM2: like SV but all numbers < 1492 and > 3000 are replaced by their numbers of digits

COLL: like SV but collocation (bigrams and trigrams) are added7

COLL+NUM1: combination of COLL and NUM1

COLL+NUM2: combination of COLL and NUM2

NV: like SV but all terms that are not nouns or verbs are removed8

NV+COLL: like NV but collocations are added7

N: like SV but all terms that are not nouns are removed8

I tested these options and how they influence the quality of sentence clusterings in an exper-
iment described in section 7.2.

4.3 Size of semantic space

In many fields of NLP a large knowledge base or large corpus is advantageous if one wishes
to draw conclusions from data. For example Banko and Brill (2001) presented a study of the
effect of data size on machine learning for natural language disambiguation. They showed that
various machine learning algorithms can benefit from larger training sets. Foltz et al. (1998)
and Barzilay and Lapata (2008) used a larger corpus to get a reliable semantic space in order to
automatically judge the coherence of documents. Other applications use a background corpus
to broaden the knowledge and the amount of information about words. Zelikovitz and Kogan
(2006) did some experiments on using web searches to create background corpora for text
classification. By creating a background corpus relevant to the classification domain at hand,
one can acquire additional knowledge and improve the accuracy of text classification.

The first attempt to make use of a larger semantic space in MDS was used in the Embra
system for DUC 2005 (Hachey et al., 2005). Here a large general semantic space was built
from AQUAINT and DUC 2005 data (100+ million words) in order to derive a more robust
representation of sentences.

Li et al. (2006) suggest that LSA is more applicable to MDS than to single document sum-
marization as a larger corpus may lead to a more accurate semantic space. However they also
point out that a general background corpus might bias term relations. Therefore they propose
to create smaller semantic spaces from the sets of documents to be summarized. A similar ap-
proached was used in Schütze et al. (1995) for the document routing problem. Wiener et al.
(1995) showed that a local LSI outperforms global LSI for text filtering. Local LSI means that

7For extraction of collocations from the data set the collocation finder from NLTK was used (see section 3.4)
8For tagging the RASP tagger was used (see section 3.4)
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a separate LSI analysis was computed for each category or group of similar categories. They
expected that a local representation would be more sensitive to small localized effects, e.g., the
correlated use of infrequent terms. They argue that infrequent topics are usually indicated by
infrequent terms and that these could be classified as noise by SVD and as a result are “projected
out of the LSI representation” (Wiener et al., 1995). Quesada (2007) showed in his experiments
that a small data set is indeed more sensitive to isolated groups of objects that are not similar to
the rest of the corpus and show only similarity to each other.

To my knowledge the influence of the size of a vector space – in this case an LSA space –
on sentence clustering for MDS has not been investigated previously. The question is whether
and how cluster quality is influenced by size of the space.

I tested the two hypotheses described above:

• A local space leads to better results since it is more sensitive to local changes.

• A larger space results in higher quality sentence clusters since it provides a more reliable
semantic space.

There are three space options that are interesting to test for sentence clustering in MDS:

LOCAL LSA: each sentence set is represented in it own space

EXTENDED LOCAL LSA: all sentence sets from the data set are represented in one space

GLOBAL LSA: not only all sentences from the data set, but also additional external sentences
are represented in one space

With LOCAL LSA a separate TSMset is built for each of the six sentence sets (see section 3.3),
resulting in six separate clustering spaces for the whole data set. With the EXTENDED LOCAL

LSA option one TSMall and hence only one clustering space for all sentences from the six
sentence sets is created. Even if only one space is created only the sentences from one set are
clustered at a time. This ensures that only sentences from the original sentence set are present
in the clusters for that sentence set. The GLOBAL LSA space differs from the previous space
options as external sentences, i.e., sentences that are not part of the data set, are added. This
results in a larger TSMglobal containing the index terms and sentences from the data set and from
external sources, here from other DUC document sets.

I tested the three space options for sentence clustering using BOSSEClu in an experiment
described in section 7.3.

4.4 Optimal number of dimensions

The most crucial parameter in LSA is the number of dimensions k. As described in section
3.2, k is the number of dimensions that are kept in the three submatrices Tk, Sk and Dk. If
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too many dimensions are kept, the latent semantic structure cannot be revealed because the
sentences and words are not projected near enough to each other and too much noise is left. If
too few dimensions are kept then words and/or sentences will be superimposed on one another,
which means that everything is similar to everything, destroying the latent semantic structure.
The choice of the right number of dimensions has always been a problem of LSA. Even the
introductory paper Deerwester et al. (1990) noted that the amount of dimensional reduction
is critical to LSA. In Dumais (1991) the retrieval performance of LSI on the MED database
was evaluated using a range of dimensions. It was reported that the performance increases
considerably after 10 or 20 dimension and reaches its climax between 70 and 100 dimensions
and then starts to fall slowly. In my preliminary experiments (section 4.2) I obtained similar
results. Figure 4.2 shows the development of 3-point-average precision over different values
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Figure 4.2: LSA pattern in IR

of k. This pattern it prototypical for LSI in IR. For very few dimensions the performance is
poor, then the performance peaks and falls off slowly. For some IR corpora such as MED
there is a substantial range over which LSA outperforms the standard VSM model. Dumais
(1991) explains this pattern with the assumption that the performance increases only while
added dimensions represent meaningful word usage patterns. The performance then approaches
the level of word matching performance. However for other corpora that is not the case. In
these cases LSI only outperforms VSM in a small range and the performance of LSI can even
lie below that of word matching for some k. Thus it is very important to find the optimal number
of dimensions to keep.

Deerwester et al. (1990) states that literature on factor analysis has not provided a proper
method to determine the optimal value for k. They choose k empirically instead. This method of
choosing the right dimensionality of the search space is only possible when a gold standard for
the particular application of LSI is available. Dumais (2007) dismissed this problem and argues
that k can be set approximately, as the range of k within which LSA outperforms VSM is rather
large (see above). In other papers a standard number of k is used. Dumais (1991) reports that
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LSI works well when k is relatively small compared to the number of unique terms. For their
further research they use 100 dimensions since they found out that this number works well with
the test collections used. Here the assumption is made that the optimal number of dimensions
k of the search space is related to the topic variety of the collection and that for homogeneous
collections 100 dimensions are sufficient to capture the major word usage patterns.

Landauer and Dumais (2008) specifies that a value of k between 50 and 1000 dimensions is
optimal for most language simulations, but that the optimal number of dimensions depends on
the domain. For solving the TOEFL test with results similar to those of human learners a 300
dimensional approximation produced the best results (Landauer and Dumais, 1997).
For term comparison Bradford (2008) describes in his study of required dimensionality for large
scale LSI applications an island of stability in the range of 300 to 500 dimensions. Using a num-
ber of dimensions outside this range results in significant distortion in term-term correlations.
He specifies that for collections with thousands to tens of thousands of documents, k = 300

appeared to be good choice. However for collections containing millions of documents, 400

dimensions produced better results.

For single document summarization Miller (2003) claims that a dimensional reduction of
70-80% works best. He states that 15% < k < 30% of the original dimensions performs best.
For MDS Steinberger and Krišt’an (2007) claim that 10 dimensions are sufficient. Hachey et al.
(2005) use a 100 dimensional approximation of their larger semantic space containing 1000
content bearing terms.

On the other hand Quesada (2007) explains that the optimal dimensionality depends on size.
He claims that different-sized spaces have completely different properties and that therefore a
general method to determine the optimal number of dimensions is not applicable. However
there are several techniques for estimating the optimal dimensionality. Skillicorn (2007) de-
scribed amongst others two methods of determining k automatically: (i) scree plot analysis and
(ii) evaluation of the entropy of singular values. In the first method a scree plot, where the sin-
gular values are plotted in descending order (Wikipedia, 2011a) is used. This plot sometimes
shows a point where the values drop significantly. The first k singular values up to this point
are then kept. Another method is Horn’s Parallel Analysis (PA) (Horn, 1965). The technique
was originally designed to evaluate the components of a principal component analysis (PCA).
When used for estimating optimal number of dimensions the eigenvalues that are larger than
expected values under term independence (when the columns of A were orthogonal) are kept.
Efron (2002) presents the Amended Parallel Analysis (APA) where standard error is taken into
account.

This short overview of optimal number of dimensions in LSA literature shows that the op-
timal number of remaining dimensions varies between different corpora, domains and applica-
tions. That means the optimal dimensionality depends on task, content and space size. In a set
of experiments I examined how the quality of sentence clusters is influenced by the number of
dimensions in the clustering space CSk and if the optimal number of dimensions changes when
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other options are incorporated. In the first experiment I checked whether the peaked profile that
is typical for LSA in IR is also shown in LSA for sentence clustering in MDS (section 7.4.1). I
examined which numbers of dimensions work best for different values of the clustering param-
eter t (section 7.4.2). In another experiment I tested how the number of optimal dimensions is
affected by different sized spaces (section 7.4.3). Another question I tried to answer is whether
the size and composition of the indexing vocabulary affects the optimal setting of k (section
7.4.4).



Chapter 5

Evaluation strategy

True genius resides in the capacity for
evaluation of uncertain, hazardous, and
conflicting information.

SIR WINSTON CHURCHILL

BOSSEClu produces clusters of sentences for a given set of related documents. In order
to estimate the quality of the clusterings, the sets of clusters have to be evaluated. There are
different ways to evaluate clusterings. In general there are two types of evaluation methods for
clusterings (Steinbach et al., 2000; Amigó et al., 2009):

Internal cluster evaluation measures intra-cluster similarity, i.e., how close the elements within
a cluster are to each other, and inter-cluster similarity, i.e., how close the elements of a
cluster are to elements from other clusters.

External cluster evaluation is based on a comparison between the output of a clustering sys-
tem and an external solution, which is generally a gold standard built by human judges.

Internal cluster evaluation only indicates how well a clustering algorithm performs on the given
data representation compared to other algorithms. Internal evaluation can help to fine-tune a
cluster algorithm to get the best possible results for the given representation, so that the internal
relations are preserved and the clustering solution gives a valid picture of that data represen-
tation. Nevertheless this evaluation method does not have the ability to assess the truth of the
clustering.

5.1 Gold standard evaluation

By evaluating an automatically generated set of clusters to a gold standard (also called ground
truth or set of classes) the correctness and thereby the quality of the clustering solution can be
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determined. The system-generated set of clusters is compared to one or several sets of classes
and a similarity score is calculated (see section 5.5). The advantage of gold standard evalua-
tion is that it not only rates the quality of the data representation as with internal evaluation,
but also measures the quality of the clusters. This is important because a data model that pro-
duces clustering with high intra and low inter-cluster similarity can still result in low quality
clusterings.

In section 5.2 I present and discuss some existing gold standards for sentence clustering. An
overview of inter-annotator agreement on sentence clustering in the literature is given in section
5.3. I decided to create a gold standard for sentence clustering in MDS. Therefore I designed
guidelines that help annotators to produce consistent clusterings. A description of the develop-
ment of the guidelines and the reasons and motivation behind them is given in section 5.4. An
important part of the evaluation strategy is also the scores and measures used to determine the
similarity between system generated clusterings and gold standard clusterings. An overview
and evaluation of several evaluation measures is presented in section 5.5.

5.2 Existing gold standards for sentence clustering

In this section I discuss existing gold standards for sentence clustering, how they differ from
my approach and why I chose to create a new gold standard for sentence clustering.

Zha (2002) created a gold standard relying on the section structure of web pages and news
articles. In this gold standard the section numbers are used as true cluster labels for sentences.
That means that only sentences within the same document and even within the same paragraph
can be assigned to the same cluster whereas my approach is to find similar information between
documents.

Hatzivassiloglou et al. (1999, 2001) describe the creation of a gold standard for detecting
text similarity over short passages. They used 30 articles from the Reuters part of the 1997
TDT pilot corpus and extracted 264 text units (paragraphs) resulting in 10,345 paragraph pairs
(10,535 in 2001). Most of the paragraphs contain one sentence. To create a gold standard these
paragraph pairs were manually marked for similarity by two reviewers. They were asked to
judge if the paragraphs contain common information. They were given the guideline that only
paragraphs referring to the same object, performing the same action, or describing something
in the same way in both paragraphs are to be considered similar. Here the problem is that only
pairs of paragraphs are annotated whereas my work focuses on sentences and the creation of
clusters of similar sentences not on pairs of sentences.

For multi-document topic segmentation Sun et al. (2007) used a set of 102 introduction
sections of lab reports from a biology course from Pennsylvania State University consisting
of 2,264 sentences in total. Each section has two segments: introduction of plant hormones
and a description of the content of the lab. For evaluation the sentences were labelled with the
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segment number. The difference to my approach is that here the number of topics is predefined.
A sentence can belong to either one of the two segments.

A gold standard for Portuguese sentence clustering was build by Seno and Nunes (2008).
They used 20 groups of news articles in Portuguese with 1,153 sentences in 71 documents. The
first author created the reference clustering. They used the similarity definition from Hatzivas-
siloglou et al. (1999) (see above). Each sentence of each document was manually classified, but
it is not clear if each sentence must belong to a cluster or if there are sentences which do not
belong to any cluster. A sentence can only belong to one cluster. If there was more than one
possible cluster for a sentence, the sentence was added to the cluster which is most semantically
similar.

An approach to event extraction by sentence clustering was described in Naughton et al.
(2006, 2008) and Naughton (2007). Naughton et al. (2006) used a collection of 219 news
stories describing events related to the war in Iraq. Two volunteers were asked to assign labels
to each sentence representing the event(s) in a sentence. A sentence can refer to multiple events
and if a sentence does not refer to any event it was labelled with “0”. Naughton (2007) used a
different corpus – a subset of the Iraq Body Count (IBC) dataset consisting of 342 articles. Ten
annotators were asked to identify events in the documents. The events were uniquely identified
by integers. The sentences were then assigned to different categories: Category N for sentences
that describe a new event, C for sentences that refer to an event introduced in the preceding
sentence, B for sentences which refer to events earlier in the document but not in the preceding
sentence and X for sentences that did not refer to any event. Naughton et al. (2008) used part of
the ACE 2005 Multilingual Corpus and part of IBC. In ACE 2005 sentences are – amongst other
things – annotated for events like Die, Attack, Transport or Meet. Ten annotators were asked to
mark all Die event instances in the IBC corpus. In these three gold standards the sentences are
only labelled for events they describe but not for sentence similarity. The gold standards consist
of groups of sentences that contain instances of the same event. The sentences in a group are
not necessarily semantically similar since they might describe different aspects of an event.

In conclusion it can be said that there is no gold standard available where the following
conditions hold:

• More than two semantically similar sentences are clustered together.

• The sentences in a cluster come from different documents.

• The topics or labels of the clusters are not predefined.

• The sentences are written in English.

The most relevant gold standard for my work is the gold standard for Portuguese sentences
clustering (Seno and Nunes, 2008). The problem here is that the gold standard includes only
one clustering, but there might not be a single right answer for sentence clustering. Only the
first author and not independent judges clustered the sentences.
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5.3 Inter-annotator agreement in sentence clustering

In this section I discuss some experiments for calculating inter-annotator agreement in different
fields described in the literature.

The gold standard for the experiments in Hatzivassiloglou et al. (1999) consists of 10,345
paragraph pairs that were manually annotated by two reviewers. They marked pairs as either
valid paraphrases or invalid. To calculate the inter-annotator agreement in sentence clustering
and to validate their definition of similarity, two annotation experiments were performed. Three
additional judges were asked to mark a set of 40 randomly chosen paragraph pairs from their
gold standard. It is reported that the three judges agreed with the gold standard in 97.6% of the
paragraph pairs resulting in κ = 0.5876. 97% of the sentence pairs from the random sample
used in this experiment were marked not similar in the gold standard. In a second experiment
a balanced sample consisting of 50 pairs that were marked similar in the gold standard and 50

pairs that were marked not similar were used. Here another two additional judges agreed on
the annotations in 91% of the paragraph pairs resulting in κ = 0.82. However in Hatzivas-
siloglou et al. (2001) significant disagreement between judges and a large variability in the rate
of agreement is reported. For different experiments κ scores between 0.08 and 0.82 are reported.
Unfortunately these experiments are not described in detail. The authors mention that the dis-
agreement is significantly lower if the instructions are as specific as their instruction, and that
two reviewers who marked the paragraph pairs for similarities could resolve their differences
after discussion.

Sun et al. (2007) used introduction sections of lab reports for multi-document topic detection
but do not describe how many human judges annotated the data or how much the judges agreed.
They only state that it is not hard for humans to identify the boundary between the two segments.
Since the annotations were not evaluated it is uncertain if they can be used as a gold standard to
compare their system output to it.

To approximate the inter-annotator agreement in the creation of the gold standard for event
identification by sentence clustering, in Naughton (2007) two annotators were asked to anno-
tate a disjoint set of 250 documents. The sentences were mapped to one of the four categories
described in the previous section. The Fleiss’ κscore for this experiment was 0.67 for all cat-
egories, 0.69 for N (sentence introduces new event), 0.71 for C (sentence refers to an event
introduced in the previous sentence), 0.52 for B (sentence refers to an event introduced before
the previous sentence) and 0.72 for X (sentence that does not refers to any event). The authors
conclude that “the raters found it difficult to identify sentences that referenced events mentioned
earlier in the document” and that “the annotations are somewhat inconsistent, but nonetheless
are useful for producing tentative conclusions” (Naughton, 2007, p.4). For the gold standard
described in Naughton et al. (2008) the inter-judge agreement was calculated on the basis of an-
other experiment where two annotators annotated 250 documents. The evaluation results in a κ
score of 0.67. This inter annotator agreement described the agreement of humans in identifying
events in sentences and not in identifying similar sentences.
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The results described here lead to two conclusions: (i) humans do not agree entirely on
identifying paraphrase pairs or on annotating events in sentences and (ii) that there might be
several ideal solutions to event and paraphrase identification. In this aspect the evaluation of
paraphrase identification and event extraction is similar to summary evaluation which I will
describe very briefly here. There are different ways to evaluate summaries. Spärck Jones and
Gallier (1996) define two types of summary evaluation:

Extrinsic summarization evaluation is a task-based evaluation, where the quality of a sum-
mary is assessed by determining the effect of the summarization on a given task, e.g.,
question answering on the basis of the full text vs. question answering on basis of a
summary.

Intrinsic summarization evaluation is a system-oriented evaluation, where the quality of the
summary is assessed by looking at the quality and the informativeness of the summary.

Often the informativeness of a summary is determined by comparing it to an ideal summary
(single summary gold standard) or a set of ideal summaries (compound gold standard). The
problem with single summary gold standard is that there is no single best summary, but many
good summaries. A system generated summary can be quite different from the ideal summary
but can still be a good and acceptable summary. Salton et al. (1997) reported low agreement
(only 46% overlap) between human subjects when they were asked to choose the most important
20% of paragraphs from articles. Only 25% overlap in extracts that were selected by four judges
was reported by Rath et al. (1961). As van Halteren and Teufel (2003) found, a compound
gold standard of 30-40 summaries is needed to counteract the effects of variation in human
summaries.

In conclusion, human behaviour in clustering sentences and the rate of agreement between
humans have never been evaluated. The results from the literature described here indicate that
humans might not agree completely on extracting important information from text documents
or on identifying similarity between sentences. However results from summary evaluation have
shown that there can be several ideal solutions to a given task and that a compound gold standard
can help to counteract the variations in annotations. Therefore I created the first compound
gold standard for sentence clustering in MDS. Following the findings of Hatzivassiloglou et al.
(2001) that detailed instructions lead to a decrease in disagreement between human judges, I
then provide humans annotators with a set of detailed instructions and guidelines.

5.4 Creation of guidelines for human sentence clustering

The results from literature indicate that there is no one ideal sentence clustering solution. There-
fore I decided to build a compound gold standard for sentence clustering, where several clus-
terings created by human annotators are used as ground truth. Humans might not agree com-
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pletely when identifying paraphrases or extracting events because different annotators have dif-
ferent views and definitions of similarity. Therefore I tried to reduce disagreement, risk of error
and variation in human clustering by giving the annotators detailed instructions and guidelines.
These guidelines give, amongst other things, the definition of a cluster, under which conditions
sentences should belong to the same cluster and what levels of similarity should be taken into
account.

The guidelines for human sentence clustering for MDS evolved gradually and the evolving
guidelines were pilot tested by myself and my supervisor. The final set of guidelines and in-
structions can be found in Appendix A. The starting point for the development of the guidelines
was the creation of clusterings for a single DUC document set. Sentences were assigned to clus-
ters, with the task in mind to find groups of sentences that represent the main subtopics in the
documents. The annotations were done independently and afterwards the resulting clusterings,
the approach and procedure used were compared and discussed. By looking at the differences
between the two manual clusterings and reviewing the reasons for the differences, the guidelines
were generated and tested on other sentence sets until the differences between the clusterings
became noticeably fewer. I now describe the guidelines that evolved from this process and the
philosophy behind them in detail.

5.4.1 Characteristics of a cluster

The idea behind sentence clustering is that each cluster represents a subtopic of the document
collection to be summarized and that each cluster can be represented by one extracted or gener-
ated sentence. Thus the first rule was easily found:

• Clusters should be pure, i.e., each cluster should contain only one topic.

Each cluster must be specific and general enough to be described in one sentence. In addition
the annotators were asked to write down a description for each cluster in the form of a sentence.
A description or label for a cluster makes it easier to keep an overview of the clusters already
created and it ensures that the annotators follow the first rule. It is much easier to assign a
sentence to a cluster by comparing it to the label than to each sentence in the cluster. At the end
of the clustering process the annotators are asked to review their clusterings. The label helps
them to remember the common theme all sentences in that cluster should have.

In MDS it is important to identify redundant information. Redundancy can be a measure of
importance. The assumption is that information that is present in many or all of the documents
in a DUC cluster is essential for the topic. In the more documents a piece of information is
present, the more important it is for the summary. Thus the next rule was established:

• The information in one cluster should come from as many different documents as possi-
ble. The more different sources the better.
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This also leads to an exclusion criterion, because the reverse conclusion of my definition of
importance is that information that is only present in one document is not important and is
therefore not included in the summary. This explains the next rule:

• Each cluster must include sentences from different documents. A cluster consisting only
of sentences from one document is not a valid cluster.

Thus a topic can only be included in the summary if it appears in more than one document.
Therefore clusters must contain at least two sentences which come from different documents.
Sentences that are not in any cluster that contain at least two sentences are considered irrelevant
for the MDS task, which leads to the following rule:

• Each cluster must have at least two sentences and should have more than two if possible.

5.4.2 Spectrum of similarity within a cluster

The next set of rules concerns the different types of similarity. Since each cluster will be repre-
sented by only one sentence in the summary, the sentences in a cluster should be very similar.
Therefore the following guideline was created:

• In an ideal cluster the sentences would be very similar.

Ideally the sentences in a cluster should be paraphrases of each other. Paraphrases are units of
text that are semantically equivalent. Barzilay (2003) defines paraphrases as “pairs of units with
approximate conceptual equivalence that can be substituted for one another in many contexts.”
[p. 18]. Consider the following example of a sentence cluster:

- “He also was responsible for helping to form the Big Bang theory of creation.”

- “His work gave rise to the Big Bang theory that the universe was created by a tremendous
explosion.”

The sentences in this cluster are very similar and they can be considered to be paraphrases. This
kind of cluster would be perfect for summarization; one of the two sentences could represent
the cluster in the summary. However a stringent definition of a sentence cluster that restricts
clusters to consist only of paraphrases can lead to different problems:

i) News articles are written by different people with different writing styles, vocabulary and
different knowledge. Their sentences might be similar but not always semantically equiva-
lent. They may also include a different amount of information. In restricting the cluster to
paraphrase groups only very few clusters will be created.
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ii) The clusters found will be very small since all sentences in a cluster must be semantically
equivalent to each other.

iii) It is possible that many clusters are created that indeed describe the same subtopic but from
different angles. This would result in the over-representation of a topic in the summary and
redundancy removal would be impossible.

Therefore sentences that are not paraphrases can be members of the same cluster. In order to
guide the human annotators, I defined levels of similarity acceptable. The following ranked list
gives a spectrum of similarity, where paraphrases are preferred over other kinds of similarity.

Paraphrases The sentences talk about the same person, same event or the same time. The
sentences cover roughly the same amount of information.

Difference in numbers Sentences that are actually paraphrases but differ in numbers.

Partial information overlap A part of a sentence (clause or phrase) is similar to another sen-
tence.

Following these different types of similarity, I defined more rules to guide the human an-
notators how to handle the different similarities. Often newer articles about an event contain
updated information. Consider for example the following two sentences:

- 13.6.1991: Two people have been reported killed so far.

- 15.6.1991 At least four people have died

When the author of the second sentence wrote his article, which was published two days after
the first sentence, new information about the number of casualties was available. Thus the
sentences vary in numbers, but they still have the same topic. Sometimes numbers are vague
and are not used to give an exact amount but an order of magnitude:

- Clark Air Base is in Angeles, a city of more than 300,000 people about 50 miles north of
Manila.

- 350,000 residents live in Angeles City, where the air base is located, about 50 miles north
of Manila.

These two sentences communicate the same information that the city next to the air base is a
major city with many residents. The exact number of residents is not important. Therefore
sentences that only differs from each other in numbers can belong to the same cluster, which is
described by the following rule:

• If similar sentences only vary in numbers they can still belong to the same cluster.
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There are many sentences in news articles that are not paraphrases but have the same topic.
For this kind of sentence another rule was set:

• Not every sentence inside a cluster will be equally similar to all sentences in that cluster.
There may be a subset of sentences that is particularly similar to each other. That is okay
as long as you think the overall cluster is similar.

Following this rule sentences that are not paraphrases of each other can be joined to form a
cluster. The following example shows such a cluster:

- He also was responsible for helping to form the Big Bang theory of creation.

- His work gave rise to the Big Bang theory that the universe was created by a tremendous
explosion.

- That gave support to the theory that a massive explosion –the Big Bang– created the
universe 10 to 20 billion years ago.

In this example the last sentence is not a paraphrase of the first or second sentence, but it still
talks about the same fact. This sample cluster shows that a cluster of sentences less similar to
each other than paraphrases can be used for summarization, because they can be summarized
by one sentence, e.g., Hubble’s work contributed to the Big Bang theory.

The last rule concerning similarity of sentences in a cluster, covers partial information over-
lap. In news articles often more then one piece of information is present in one single sentence.
To be able to include these sentences into clusters the following rule was created:

• Generalization is allowed. Sentences in a cluster do not have to be very similar. They still
need to be about the same person, fact or event, but they do not have to cover exactly the
same information or amount of information.

As long as sentences are about the same person, fact or event, and the resulting cluster can be
represented by one sentence the sentences may be members of the same cluster. For example
the sentences in the following clusters partially overlap in information and can be represented
by the sentence: Charles Schulz died.

- The coincidence of Charles Schulz’s death one day before his final Peanuts appeared in
newspapers weighed heavily Sunday on fans of Charlie Brown, Snoopy and Lucy.

- Charles Schulz, the creator of Peanuts, the tender and sage comic strip starring Charlie
Brown and Snoopy that was read by 355 million people around the world, died in his sleep
on Saturday night at his home in Santa Rosa, Calif., just hours before his last cartoon ran
in the Sunday newspapers.

- He was 77 when he died of cancer at his home in Santa Rosa in February.

- He died in his sleep at home Feb. 12.
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5.4.3 Discourse within a cluster

Consecutive sentences always add some new information in comparison to the preceding sen-
tences. Since they still talk about the same event, person or fact, it is very tempting to put them
in the same cluster. This following rule is a reminder that clusters of very similar sentences are
preferred:

• A sequence of consecutive sentences from one document should not normally be a cluster.
There is one exception: if the sentences are very similar they can end up in one cluster
but only if they attract at least one sentence from another document.

If it were only allowed to use the information that is present in a sentence, the above cluster
about the death of Charles Schulz would not be possible. The first two sentences mention
Charles Schulz and the latter two only he. Humans will infer from the context that he refers
to Charles Schulz. If this kind of inference is not allowed the whole task becomes unnatural,
whilst it would make it easier for my system. Thus the following guideline was created:

• Take discourse/context into account. Do not look at that sentence on its own but within
context of the whole document. If something important is missing from the previous
sentences add it to the sentence.

5.4.4 Standardized procedure for sentence clustering

In general, clustering sentences is not a trivial task, there are several constraints that pull against
each other and the human annotators have to find the best compromise. To help the annotators
and give them a structure a standardized procedure was proposed:

1. Read all documents. Start clustering from the first sentence in the list. Put every sentence
that you think will attract other sentences into an initial cluster. If you feel you will not
find any similar sentences to a sentence, put it aside. Continue clustering and build up the
clusters while you go through the list of sentences.

2. You can rearrange your clusters at any point.

3. When you are finished with clustering, check that all important information from the
documents is covered by your clusters. If you feel that a very important topic is not
expressed in your clusters, look for evidence for that information in the text, even in
secondary parts of a sentence.

4. Go through your sentences which do not belong to any cluster and check if you can find
a suitable cluster.



CHAPTER 5. EVALUATION STRATEGY 71

5. Do a quality check and make sure that you wrote down a sentence for each cluster and
that the sentences in a cluster are from more than one document.

6. Rank the clusters by importance.

7. Return a list of clusters in the form:

rank of cluster – “your sentence”: sentence number〈blank〉sentence number〈blank〉...

These guidelines and description of the clustering task were given to human annotators, who
were asked to cluster sets of sentences in order to create a gold standard for sentence clustering.

5.5 Evaluating sentence clusters against a gold standard

There are many different measures available for evaluating a clustering against a gold standard.
Each of them has different advantages, disadvantages and constraints. In section 5.5.1, I define
and explain requirements for an evaluation measure for sentence clustering. I present the most
widely used and promising evaluation measures found in the literature in section 5.5.2. In
sections 5.5.3 and 5.5.4 the different measures are tested and evaluated.

5.5.1 Requirements for an ideal evaluation measure

Not all evaluation measures are equally applicable to different clustering tasks. Different mea-
sures capture different qualities of a clustering. Here I explain the requirements an evaluation
measure for sentence clustering in MDS has to meet. A clustering to be evaluated is called set
of clusters and a gold standard it is compared to is called set of classes. Each requirement will
be explained using simple examples which also serve as test cases to test whether the measures
meet the requirements9. In these examples a class is represented by a set of (coloured) shapes
and a cluster by a circle enclosing the members of a cluster.

Homogeneity and completeness

An ideal evaluation measure should reward a set of clusters if the clusters are homogeneous, i.e.,
if they consist only of sentences from one class (homogeneity). On the other hand it should also
reward the set of clusters if all sentences of a class are grouped into one cluster (completeness).
In figure 5.1 an sample set of clusters is shown. Class A consists of three triangles, class B
of four stars and class C of five circles. All elements of class A are member of cluster 1, but
at the same time cluster 1 also contains one object from another class. In other words this

9Some of these test cases were taken from Amigó et al. (2009).
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cluster contains a complete class but is not homogeneous. Cluster 2 is homogeneous, i.e., it
only contains elements from one class, but not all elements of that class were put into cluster 2.
All and only the elements of class C are grouped into cluster 3, which is with regard to the
given classes an ideal cluster. All evaluation measures in consideration will be tested on simple

�� ����

Figure 5.1: Homogeneity and completeness in a sample set of clusters

test cases. The test case for homogeneity can be seen in figure 5.2. The first cluster of the left set
of clusters (L1) contains a circle and two squares. In the right set of clusters (L2) these objects
are grouped into two clusters which results in two homogenous clusters. Since L2 contains
now three homogeneous clusters instead of one in L1, the evaluation score for L2 should be
better than that of L1. Only if that is the case does the evaluation measure reward homogeneity
properly.

�����

Figure 5.2: Cluster homogeneity

Figure 5.3 shows the test case for completeness. Again L2 should gain better scores than L1,
because the elements of a class (in this case the circles) are distributed over fewer classes in L2.

Preference of homogeneity over completeness

If sentences that are member of the same class are distributed over several clusters, an evalua-
tion measure should penalize the clustering less than if a complete class was put in one cluster
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Figure 5.3: Cluster completeness

together with a lot of sentences from other classes. For sentence clustering in MDS it is more
important that there are only similar sentences (sentences that belong to the same class) in a
cluster than to have all of the similar sentences in that cluster. Each cluster will be represented
by one sentence in the summary. This sentence is extracted or generated from the sentences
present in the cluster. It is easier to choose/generate a representative sentence from a cluster
that contains very similar information about the same topic, even if some information is miss-
ing, than from a cluster that contains all information about a certain topic but is clouded by
irrelevant information. Therefore homogeneity is more important than completeness for sen-
tence clustering in MDS, which also needs to be recognized by an evaluation measure. In the
test case for the preference of homogeneity over completeness depicted in figure 5.4 the right
set of clusters (L2) includes two homogeneous clusters but not all circles are members of the
same clusters. The other set of clusters (L1) contains one cluster that includes all circles but in
addition this cluster includes objects from other classes. Following the requirement that homo-
geneity is more important than completeness, the evaluation should result in a better score for
L2 than for L1.

����

Figure 5.4: Preference of homogeneity over completeness

5.5.2 Description of evaluation measures

In this subsection I will present different evaluation measures that are most widely used through-
out the literature or look promising to fit the defined requirements. The evaluation measures can
be devided into three groups:
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1. Entropy based measures

2. Combinatorial measures, i.e., measures based on counting pairs

3. Measures based on mapping clusters to classes

5.5.2.1 Nomenclature

Let S be a set of N sentences sa so that S = {sa|a = 1, ..., N}. A set of clusters L = {lj|j =

1, ..., |L|} is a partition of a data set S into disjoint subsets called clusters, so that lj ∩ ln = ∅
and i 6= n. |L| is the number of clusters in L. A set of clusters consisting of only one cluster
which contains all N sentences of S is called Lone. A cluster that contains only one object is
called a singleton and a set of clusters that only consists of singletons is called Lsingle.
A set of classes C = {ci|i = 1, ..., |C|} is a partition of a data set S into disjoint subsets called
classes, so that ci ∩ cn = ∅ and i 6= n. |C| is the number of classes in C. C is also called
the gold standard of a clustering of data set S because this set contains an ideal solution to the
clustering task and other clusterings are compared to it. The number of sentences shared by
cluster lj and class ci is denoted by nij where ni is the number of sentences in the class ci, and
nj is the number of sentences in the cluster lj .

Entropy based measures

Entropy is a measure of disorder or unpredictability. In clustering a maximum entropy implies
that the objects in a set of clusters are maximal disordered in comparison to the objects in a set
of classes.

Entropy The entropy of a cluster of objects gives a score of how much information this cluster
contains in relation to a set of classes. In other words it measures how the classes are distributed
within that cluster. The entropy of one cluster (H(lj)) is calculated by the probability of a
sentence pi,j of lj being a member of a class ci. Thus given a cluster lj the entropy of this
cluster is given by equation 5.1.

H(lj) =−
|C|∑
i=1

pi,j log(pi,j)

=− 1

log |C|

|C|∑
i=1

nij
nj

log
nij
nj

(5.1)

The entropy of a set of clusters (H(L,C)) is given by the sum of the individual cluster entropies
weighted by the cluster size in relation to the number of sentences in S (N ) as shown in equation
5.2.

H(L,C) =

|L|∑
j=1

nj
N
H(lj) (5.2)
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The entropy of a set of clusters ranges from 0 to logN . A minimum entropy of 0 implies that
the clustering consists of clusters that only contain sentences from a single class. The maximum
entropy of logN is reached if L is maximal disordered in comparison to C, so that the clusters
consist of sentences from all classes, e.g., when L = {[1, 2, 3]} and C = {[1], [2], [3]}.
The disadvantage of this measure is that it only measures homogeneity and therefore favours
clusterings consisting of many clusters containing few sentences. For example the entropy of
Lsingle, e.g., L = {[1], [2], [3]} is always 0 regardless of the set of classes it is compared to, since
each cluster contains sentences from only one class. However Lsingle is only the ideal clustering
in comparison to Csingle.

Vβ-measure and Vbeta The V-measure (Rosenberg and Hirschberg, 2007) is an external eval-
uation measure based on conditional entropy:

Vβ(L,C) =
(1 + β)hc

βh+ c
(5.3)

It measures homogeneity (h) and completeness (c) of a clustering solution. By calculating the
conditional entropy of the class distribution given the proposed clustering (H(C|L)) it can be
measured how close the clustering is to complete homogeneity which would result in zero en-
tropy. Because conditional entropy is constrained by the size of the data set and the distribution
of the class sizes it is normalized by H(C).

h =1− H(C|L)

H(C)

H(C|L) =−
|L|∑
j=1

|C|∑
i=1

nij
N
log

nij
nj

H(C) =−
|C|∑
i=1

ni

N
log

ni

N

(5.4)

By calculating the conditional entropy of the cluster distribution given the set of classes (H(L|C))
it can be measured if all members of a class are grouped into one cluster (completeness). Be-
cause conditional entropy is constrained by the size of the data set and the distribution of the
cluster sizes it is normalized by H(L).

c =1− H(L|C)

H(L)

H(L) =−
|L|∑
j=1

nj

N
log

nj

N

H(L|C) =−
|C|∑
i=1

|L|∑
j=1

nij
N
log

nij
ni

(5.5)
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Like Precision and Recall in IR there is an inverse relationship between completeness and ho-
mogeneity: increasing homogeneity often decreases completeness.

The Vβ-measure is weighted using β. If β > 1 completeness is favoured over homogeneity
whereas the weight of homogeneity is increased if β < 1. Since for sentence clustering in MDS
homogeneity is favoured over completeness β will be set to 0.5.

Vlachos et al. (2009) proposes Vbeta where β is set to |L|
|C| . This way the shortcoming of

the V -measure to favour cluster sets with many more clusters than classes can be avoided. If
|L| > |C| the weight of homogeneity is reduced, since clusterings with many clusters can reach
high homogeneity quite easily, whereas |C| > |L| decreases the weight of completeness.

V -measure and Vbeta have a range of [0, 1], where 1 means that the set of clusters is identical
to the set of classes. In general, the larger the Vβ or Vbeta score the better the clustering solution.

Normalized mutual information Mutual Information (I) measures the information that C
and L share and can be expressed by using entropy and conditional entropy:

I = H(C) +H(L)−H(C,L) (5.6)

There are different ways to normalize I . Manning et al. (2008) uses

NMI =
I

H(L)+H(C)
2

=
2I

H(L) +H(C)
(5.7)

which represents the average of the two uncertainty coefficients as described in Press et al.
(1988). NMI can be generalized to NMIβ:

NMIβ =
(1 + β)I

βH(L) +H(C)
(5.8)

Following this generalization it can be shown that NMIβ = Vβ as follows:

from equation 5.4

h = 1− H(C|L)

H(C)
| ×H(C)

H(C)h = H(C)−H(C|L) |H(C|L) = H(C,L)−H(L) (Arndt, 2004)

= H(C)−H(C,L) +H(L) |see equation 5.6

= I
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from equation 5.5

c = 1− H(L|C)

H(L)
| ×H(L)

H(L)c = H(L)−H(L|C) |H(L|C) = H(L,C)−H(C) (Arndt, 2004)

= H(L)−H(L,C) +H(C) |H(L,C) = H(C,L)

= I

from equation 5.3

Vβ =
(1 + β)hc

βh+ c
| × H(L)H(C)

H(L)H(C)

=
(1 + β)H(C)hH(L)c

βH(L)H(C)h+H(L)H(C)c
|H(C)h = I and H(L)c = I

=
(1 + β)I2

βH(L)I +H(C)I

=
(1 + β)I

βH(L) +H(C)
= NMIβ |see equation 5.8

V1 =
2I

H(L) +H(C)
= NMI �

It was shown that NMI = V1 thus NMI has the same properties as the V -measure when
β = 1. V1 weights homogeneity and completeness equally, whereas in sentence clustering
homogeneity is more important.

Variation of information (VI) and normalized variation of information (NVI) The V I-
measure (Meila, 2007) also measures completeness and homogeneity using conditional entropy.
It measures the distance between two clusterings and thereby the amount of information gained
in changing from C to L. This measure is calculated by summing conditional entropies.

V I(L,C) = H(C|L) +H(L|C) (5.9)

Remember small conditional entropies mean that the clustering is near to complete homogene-
ity/ completeness, so the smaller V I the better the clustering solution (V I = 0 if L = C). The
maximum score of V I is logN , e.g., when Lsingle is compared to Cone.

V I can be normalized to NV I (see equation 5.10), then it can range from 0 when the set of
clusters is identical with the set of classes to 1 when L is maximally different from C (Reichart
and Rappopor, 2009).

NV I(L,C) =
1

log N
V I(L,C) (5.10)

Combinatorial measures

These measures compare the two clustering in question by looking at each pair of objects, which
can fall into one of four categories:
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• TP (true positives) = objects belong to one class and one cluster

• FP (false positives) = objects belong to different classes but to the same cluster

• FN (false negatives) = objects belong to the same class but to different clusters

• TN (true negatives) = objects belong to different classes and to different cluster

Rand index (RI) To calculate the Rand Index (RI) (Rand, 1971) the total number of correctly
clustered pairs (TP+TN) is divided by the number of all pairs (TP+FP+TN+FN), thereby the
RI gives the percentage of correct decisions.

RI =
TP + TN

TP + FP + TN + FN
(5.11)

RI can range from 0 to 1 where 1 corresponds to identical clusterings.

Meila (2007) mentions that in practice RI concentrates in a small interval near 1 (for more
detail see subsection 5.5.4). Another shortcoming is thatRI gives equal weight to FPs and FNs.
In sentence clustering for MDS a sentence that is not assigned to a cluster it should belong to
(FN) is not as bad as a sentence that is wrongly assigned to a cluster (FP). An FP sentence can
cause a cluster to be less homogeneous, making it more difficult to select/generate a sentence
from that cluster.

F-measure The F -measure is a well known metric from IR, which is based on Recall and
Precision. The version of the F -score (Hess and Kushmerick, 2003) described here measures
the overall Precision and Recall. This way a mapping between a cluster and a class is omitted
which may cause problems if |L| is considerably different to |C| or if a cluster could be mapped
to more than one class. Precision and Recall here are based on pairs of objects and not on
individual objects.

P =
TP

TP + FP
R =

TP

TP + FN

F (L,C) =
2PR

P +R

(5.12)

The F-measure can range between 0 and 1. The higher the value of the F-measure the better is
the clustering solution.

Fleiss’ κ Fκ is a statistical measure of inter-rater agreement (Fleiss, 1971). It takes the agree-
ment occurring by chance into account, therefore it is more robust than a simple percentage of
agreement. It can also assess the agreement between any fixed number of annotators.

The Fleiss κ is calculated as shown in equation 5.13. Let Z be the number of pairs of
objects, i.e., Z =

(
N
2

)
and z the number of ratings per pair and G the number of categories. In

the case of sentence clustering the number of categories is 2 with the categories (i) objects are



CHAPTER 5. EVALUATION STRATEGY 79

assigned to the same cluster and (ii) objects are assigned to different clusters. zij is the number
of annotators who assigned object pair zi to category j.

Fκ =
P̄ − P̄e
1− P̄e

P̄ =
1

Zz(z − 1)

Z∑
i=1

G∑
j=1

z2
ij − Zz

P̄e =
1

Zz

G∑
j=1

Z∑
i=1

zij

(5.13)

P̄− P̄e specifies the degree of agreement that was achieved above chance and (1− P̄e) describes
the degree of agreement that is attainable above chance.

When one set of clusters is compared to one set of classes the number of annotators is 2 and
z = 2 since both clusterings (L and C) rate each pair of objects. The larger the value of Fκ the
better is the clustering solution L in comparison to C. If Fκ = 1 the clusterings are identical
and there is no agreement between the set of clusters and the set of classes if Fκ ≤ 0

Measures based on matching

In cluster evaluation the procedure of matching is defined as establishing a one-to-one relation
between a cluster and a class. Unfortunately this does not always lead to reliable evaluation
results. If a set of clusters is very different from a given set of classes not every cluster can be
matched with one class and vice versa. Thereby not every cluster or class is taken into account
while evaluating, which leads to an incomplete result. In addition a cluster can be matched with
several clusters equally well. The question is how to decide which class to use. In literature this
problem is called the problem of matching.

Purity Purity (Zhao and Karypis, 2001) is a widely used evaluation metric that measures
the homogeneity of a set of clusters. The Purity measure uses a one-to-one mapping between
clusters and a classes. The Purity of a cluster is the fraction of the highest number of common
objects between the cluster and any one class and the number of objects in the cluster (see
equation 5.14).

Purity(lj) =
1

nj
max
i

(nij) (5.14)

The overall Purity score for a set of clusters is calculated by taking the weighted sum of
Purity(l) of the individual cluster as described in equation 5.15.

Purity(L) =

|L|∑
j=1

nj
N
Purity(lj) =

1

N

|L|∑
j=1

max
i

(
nij
)

(5.15)

The values of Purity can range between 0 and 1. The larger the value of Purity the better is
the clustering solution.



80 5.5. EVALUATING SENTENCE CLUSTERS AGAINST A GOLD STANDARD

5.5.3 Evaluation of evaluation measures

I used the examples described in figures 5.2, 5.3 and 5.4 to test whether the evaluation measures
described meet the requirements I set earlier (see subsection 5.5.1).

The examples were designed such that the second sets of clusters (L2) shown in the figures
5.2, 5.3 and 5.4 display the better clustering solution. That means the evaluation measures
should give L2 a better score than L1 (remember that for Entropy, VI and NVI lower values are
better). Table 5.1 shows the results of the tests.

Homogeneity Completeness Preference
L1 L2 L1 L2 L1 L2

Entropy 0.44 0.36 X 0.36 0.36 × 0.55 0.23 X

V1/NMI 0.5 0.58 X 0.57 0.6 X 0.51 0.70 X

V0.5 0.48 0.57 X 0.56 0.58 X 0.46 0.71 X

Vbeta 0.49 0.58 X 0.57 0.59 X 0.46 0.70 X

V I 1.68 1.48 X 1.52 1.32 X 1.31 1.13 X

NV I 0.44 0.39 X 0.4 0.35 X 0.35 0.31 X

RI 0.68 0.7 X 0.68 0.7 X 0.68 0.79 X

F 0.47 0.49 X 0.47 0.53 X 0.6 0.56 ×
Fκ 0.28 0.32 X 0.28 0.38 X 0.38 0.42 X

Purity 0.71 0.79 X 0.79 0.79 × 0.69 0.85 X

Table 5.1: Results of requirement test for evaluation measures

V1/NMI , V0.5, Vbeta, V I , NV I , RI and Fκ fulfil all the requirements. All evaluation
measures tested measure homogeneity adequately. Entropy and Purity fail to measure com-
pleteness adequately. The F -measure is the only measure that doesn’t favour homogeneity over
completeness. Since these three measures fail to meet all requirements I will not use them
to evaluate sentence clustering for MDS. V1/NMI meets all requirements set, but gives equal
weight to homogeneity and completeness whereas V0.5 favours homogeneity over completeness.
In the results for the third test case it can be seen that V0.5 makes a clearer distinction between
L1 and L2 than V1/NMI . I chose not to use V I . Since V I is measured in bits with an upper
bound of log N , values for different sets are difficult to compare. NV I tackles this problem by
normalizing V I by dividing it by log N . As Meila (2007) pointed out, this is only convenient
if the comparison is limited to one data set. Nonetheless I will use NV I instead of V I since
normalized values are easier to compare and understand.
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5.5.4 Discussion of evaluation measures

In the following discussion and analysis of the behaviour of evaluation measures, the following
measures will be considered: V0.5, Vbeta, NV I , RI and Fκ. I used one random set of clusters
to analyse the behaviour of the evaluation measures. Variations of that cluster set were created
by randomly splitting and merging the clusters. These modified sets were then compared to the
original set. This experiment will help to identify what the values reveal about the quality of a
set of clusters and how the measures react to changes in the cluster set.

A clustering for the Rushdie sentence set was used for this test10. It contains 70 sentences in
15 clusters. This cluster set was modified by splitting and merging the clusters randomly until
Lsingle with 70 clusters and Lone with one cluster was reached (for details see table 5.2). For

Number of clusters
Lsingle 70
Lsplit3 61
Lsplit2 48
Lsplit1 30
Coriginal 15
Lmerge1 8
Lmerge2 4
Lmerge3 2
Lone 1

Table 5.2: Details of random changes to Judge A’s clustering for the Rushdie sentence
set

the test of how the scores of evaluation measures develop over changes to a clustering Coriginal
is compared to the modified clusterings (Lchange). The results of the test are depicted in figure
5.5.

With each change the resulting clustering becomes more and more dissimilar to Coriginal.
At the same time homogeneity increases and completeness decreases with increasing number
of clusters. When clusters are merged it is the other way round: homogeneity decreases and
completeness increases with decreasing number of clusters. Thus the measures should reach
their maximum (best) value when Coriginal is compared to itself. The scores of the measure
should decrease with each change made to the clustering. Since homogeneity is more important
than completeness for sentence clustering, it is expected that the absolute value of the gradient
of the first part of the curve (from 1 cluster to 15 clusters) is larger than that of the second part
(from 15 clusters to 70 clusters).

10For more details on the sentence set see 3.3.
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Figure 5.5: Behaviour of evaluation measures

All measures apart from the Fκ show the expected curve. However the curve of the Fκ
is symmetrical, it falls abruptly in both directions. It seems to be very sensitive to changes.
Each merging and splitting decreases the value of Fκ considerably. For Lsingle and Lone Fκ
becomes smaller than 0, which implies that these two sets of clusters have nothing in common
with Coriginal. The other measures however still find some similarity when Lsingle is compared
to Coriginal.

The RI stays most of the time in an interval between 0.82 and 1. Even for the comparison
between Coriginal and Lsingle the RI is 0.91. Only when the number of clusters in L is smaller
than 8 do the values of RI fall below 0.9. RI actually uses only a small interval of its range.
This behaviour was also described in Meila (2007) who observed that the RI concentrates in a
small interval near 1. It implies that a RI score of more than 0.9 does not really tell us anything
about the quality of the clustering solution, because even randomly altered clusterings achieve
this value.

The graphs for the remaining measures Vbeta, V0.5 and NV I show the expected pattern. All
of these measures are more affected by merging than by splitting and use their measuring range
appropriately. V0.5 favours homogeneity over completeness, but it reacts to changes less than
Vbeta. The V -measure can also be inaccurate if the |L| is considerably different to |C|. Vbeta
(Vlachos et al., 2009) tries to overcome this problem and the tendency of the V -measure to
favour clusterings with a large number of clusters.

Since Vbeta, V0.5 NMI andNV I fulfil all requirements and passed all tests they will be used
to evaluate the sentence clustering produced by BOSSEClu.
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5.5.5 Comparability of clusterings

Following my guidelines, the annotators filtered out all irrelevant sentences that are not related
to any other sentence from another document. The number of these irrelevant sentences is
different for every sentence set and possibly for every judge or system. The other sentences,
hereinafter referred to as content sentences, are the sentences that are part of a cluster. That
means that every clustering includes a different number of content sentences. To allow compar-
ison of clusterings, the same number of sentences is required in both clusterings. Here I will
discuss and examine three options of equalizing the number of sentences and two options for
adding them.

Equalizing the number of sentences in two clusterings

There are three different options for equalizing the number of sentences for two clusterings that
are to be compared (clustering1 and clustering2). The different groups of sentences discussed
here are visualized in figure 5.6

1. ALL All sentences from the corresponding sentence set that are not included in a cluster-
ing are added to it, so that L1 = clustering1 + C + E and L2 = clustering2 +B + E.

2. UNION Only sentences that are included in the first clustering to be compared but missing
from the second clustering to be compared are added to the second clustering and vice
versa so that L1 = clustering1 + C and L2 = clustering2 +B.

3. INTERSECTION Only the sentences that were included in both clusterings to be com-
pared are kept so that L1 = clustering1 −B = A and L2 = clustering2 − C = A.

When these options are applied the clusters in the clusterings remain unchanged. Only when the
INTERSECTION option is used sentences might be deleted from clusters. The options determine
the number of irrelevant sentences to be added or in case of INTERSECTION to be deleted.

Filtering out irrelevant sentences is an important step in clustering sentences, but assigning
the content sentences to clusters is essential. The problem is that these parts cannot be examined
independently of each other. If two judges or a set of clusters and a set of classes disagree on
one irrelevant sentence then they cannot have the same clusters, because this irrelevant sentence
is used as a content sentence in only one of the clusterings. For my research both parts of
the clustering process are of great importance but a consensus in the assignment of content
sentences is more important. It is important that two judges or the set of clusters in comparison
to the set of classes agree on irrelevant sentences, but if they disagree considerably on the
assignment of content sentences to clusters, then the clusterings cannot be considered to be
similar.
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sentence set (D)

clustering 1 clustering 2

AB C

E

A = sentences used in clustering1 and in clustering2
B = sentences used in clustering1 but not in clustering2
C = sentences used in clustering2 but not in clustering1
E = sentences not used in any of the two clusterings
clustering1 = A+B

clustering2 = A+ C

sentence set (D) = A+B + C + E

Figure 5.6: Set diagram of two clusterings for one data set

Adding sentences to clusterings

After the irrelevant sentences are identified using the different options described above these
sentences have to be added or deleted from the clusterings. When irrelevant sentences are added
it has to be determined how to add them. In case of INTERSECTION it has to be determined how
to treat the singletons that might emerge when all but one sentence are deleted from a cluster.
I will examine two different ways to add irrelevant sentences to a clustering, or to deal with
emerging singletons:

1. BUCKET CLUSTER: All irrelevant sentences are put into one cluster.

2. SEPARATE CLUSTERS: Each irrelevant sentence is assigned to a cluster of its own.

Adding each irrelevant sentence as a singleton seems an intuitive way to handle the problem
with the irrelevant sentences. However this approach has some disadvantages. The judges will
be rewarded disproportionately high for any irrelevant sentence they agree on. Thereby the
disagreement on the assignment of the content sentence will be less punished. With every irrel-
evant sentence the judges agree on the completeness and homogeneity of the whole clustering
increases. On the other hand the sentences in a bucket cluster are not all semantically related
to each other and the cluster is not homogeneous which is contradictory to my definition of a
cluster. Since the irrelevant sentences are combined to only one cluster, the judges will not be
rewarded disproportionately high for their agreement. However two bucket clusters from two
different sets of clusters will hardly ever be identical and therefore the judges will be punished
more for the disagreement on irrelevant sentences.
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Experiment

I discuss these options for equalizing the number of sentences in clusterings and illustrate their
assets and drawbacks by using three test cases. The sample clusterings Lx.x in table 5.3 repre-
sent different solutions to the clustering problem for a sentence set D containing 15 sentences
D = {1, 2, 3, ...15}. In each test case two clusterings (Lx.1 and Lx.2) are compared to each
other. The sentences which were not part of any cluster are listed in Sx.1 and Sx.2 respectively.

In the first test case the clusterings are similar. Both clusterings exclude the sentences 12, 13,
14, 15. The clusterings agree on the assignment of the common content sentences and disagree
on only 2 irrelevant sentences, namely 10 and 11 of L1 and 5 and 9 in the second clustering.
This test case includes the two most similar clusterings out of the three test cases and should
receive the highest similarity scores.

In the second test case the clusterings agree on more irrelevant sentences, which amounts
to almost 50% of all sentences. Nonetheless the assignment of the content sentence varies
considerably and thus this pair of clusterings should receive lower similarity scores.

In the third test case the clusterings agree on the classification into content sentences and
irrelevant sentences. This time the number of irrelevant sentences is smaller: there are only four
irrelevant sentences, but the content sentences are clusters completely different. Thus the third
test case includes the least similar clusterings and should receive the lowest score.

The fourth test case in table 5.4 shows two clusterings which differ significantly in the
numbers of irrelevant sentences: they have only 31% of the irrelevant sentences in common.
I use this test case to show the difference between the two attachment options - bucket cluster
and separate clusters.

After the irrelevant sentences were added to the clusterings according to the different op-
tions, the clusterings were compared to each other using the Vbeta evaluation measure described
in section 5.5.2. The results are shown in tables 5.3 and 5.4.

Results

L1.1={[1,2][3,4,5][6,7,8,9]} L2.1={[1,2][3,4,5][6,7,8]} L3.1={[1,2,3][4,5,6][7,8,9,10]}
S1.1={10,11,12,13,14,15} S2.1={9,10,11,12,13,14,15} S3.1={12,13,14,15}

L1.2={[1,2][3,4,10][6,7,8,11]} L2.2={[1,3,6][2,4,7][5,8]} L3.2={[1,4,7][2,5,8][3,9,11][6,10]}
S1.2={5,9,12,13,14,15} S2.2={9,10,11,12,13,14,15} S3.2={12,13,14,15}

Option Bucket Separate Bucket Separate Bucket separate
ALL 0.52 0.86 0.58 0.76 0.42 0.54

UNION 0.69 0.79 0.42 0.42 0.24 0.24
INTER 1.00 1.00 0.42 0.42 0.24 0.24

Table 5.3: Comparison of three options to equalize the number of sentences in two
clusterings
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ALL This is the easiest option for determining the number of sentences that need to be
added to the clusterings. In the end all sentences from the sentence set D are included in both
clusterings. The agreement on the irrelevant sentences is taken into account during evaluating.
This will influence the similarity score and can lead to imprecise results. This behaviour can
be observed in the similarity values for the three test cases. The third test case receives the
lowest similarity scores but considering the range of the evaluation measure of {0 − 1} they
are still too high. The second test set receives higher values than the first case when the bucket
cluster of irrelevant sentences is added to the clustering. This is reducible to the large bucket
cluster of irrelevant sentences both clusterings have in common. The agreement on the irrelevant
sentences in the second test case outweighs the agreement on the content sentences in test case
1. The problem is that the irrelevant sentences and the content sentence are weighted equally.
The evaluation measure cannot distinguish between an irrelevant sentence cluster and a content
cluster.

UNION When using this option to specify the number of irrelevant sentences, the set of
irrelevant sentences to be added is different for every pair of clusterings that is to be compared.
The evaluation scores for this option turn out as anticipated. The third test case receives lower
values than the second case, which concurrently is awarded with lower scores than the first test
set. The values for the bucket and separate options in the second and third test case are identical,
because in these examples there are no irrelevant sentences to be added to the clusterings. In
the first example the BUCKET option receives higher values when applied together with the
UNION option than with the ALL option. This is because when the UNION option is used the
bucket cluster is smaller, since the common sentences 12, 13, 14 and 15 are removed. Thus
the bucket clusters for clustering1 contains only sentences 10 and 11 and the bucket cluster
for clustering2 is [5, 9]. The sentences from that smaller bucket cluster are found in only two
clusters of L1.2 whereas with the ALL option the bucket cluster for clustering1 is larger ([10, 11,
12, 13, 14, 15] and the sentences are distributed over more clusters in clustering2. Therefore,
when the UNION option is used, the sentences are distributed over fewer clusters and hence
completeness and homogeneity increase and therefore the clusterings receive better similarity
values. Here the disagreement on irrelevant sentences is weighted lower than when all missing
sentences are added. The agreement on the content sentences becomes more important.

INTERSECTION When this option is used only the sentences that both clusterings share
are kept. The first test set receives the best possible score. Here the remaining sentences are
clustered identically. However the original clusterings are not identical, so they should not be
awarded the best values. With this option to equalize the numbers in the clustering a consider-
able amount of information is lost. For the next two sets of clusterings the results are the same
as for the UNION option since no sentences had to be deleted from the clusterings.

In conclusion it can be said that the UNION option to equalize the number of sentences in a
pair of clusterings represents the best solution to the problem of different numbers of sentences
in the clusterings.
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L4.1={[1,2] [3,4],[5,6] [7,8],[9,10,11]}
S4.1={12,13,14,15}

L4.2={[1,3]}
S4.2={2,4,5,6,7,8,9,10,11,12,13,14,15}

Option Bucket Separate
ALL 0.15 0.84

UNION 0.34 0.75
INTERSECTION 1.00 0.81

Table 5.4: Comparison of two options for adding irrelevant sentences

BUCKET CLUSTER The evaluation scores for the BUCKET CLUSTER option are always
lower than that for the SEPARATE option, when there are irrelevant sentences left. This is
because in these cases a clustering to which separate singleton clusters are added includes more
clusters than a clusterings to which one bucket cluster is added. Hence the entropy associated
with that clustering L (H(L)) is larger. On the other hand when the bucket clusters of two
clusterings are not identical (as in the first test case) then the completeness and homogeneity of
the bucket clusters decrease for every sentence the buckets clusters differ in.

SEPARATE CLUSTERS In the first example this option receives lower Vbeta scores when
applied together with the UNION option than with the ALL option. This is because when the
UNION option is used there are fewer separate singleton clusters. Hence the entropy associated
with that clustering L (H(L)) is smaller and therefore the values of the V-measures decrease.
On the other hand with every singleton two clusterings have in common the completeness and
homogeneity of the whole clustering increases. This behaviour can be observed in the fourth test
case in table 5.4. Here the two clusterings receive considerably better evaluation values when
the SEPARATE option is applied. When the number of singletons differs considerably between
the clusterings, then one of the clusterings (here L4.2) will include many more separate singleton
clusters. When evaluating the similarity of the two clusterings the clustering with the fewer
singletons (here L4.1) will receive full completeness score for every separate singleton cluster
from L4.2. In this case the completeness value is 0.93 out of 1. Consequently the clustering
pair receives high Vβ-measures although the original clusterings are not very similar. Because
of this drawback the SEPARATE CLUSTER option is not the right way to attach singletons to a
clustering.

In summary the combination of the UNION and the BUCKET options is the best method to
deal with the problem of different number of sentences in clusterings.

5.6 Chapter summary

In this chapter I described the strategy I will use to evaluate my experiments. Part of this strategy
is the decision for an external evaluation scheme using a gold standard.
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After showing that there is no gold standard available that meets my requirements, I dis-
cussed various inter-annotator agreements presented in literature. This overview led to the
decision to build a new compound gold standard for sentence clustering with highest possi-
ble inter-annotator agreement. Only a high inter-annotator agreement ensures a reliable and
effective evaluation of automatic generated sentence clusterings.

In section 5.4 I introduced the guidelines for human sentence clustering I put together. These
guidelines assure that the human annotators use the same definition of a cluster and of sentence
similarity and follow the same procedure. By providing detailed guidelines the inter-annotator
agreement can be maximised.

In the remainder of this chapter I presented and discussed various evaluation measures and
showed that only some are suitable for a reliable comparison of clusterings.



Chapter 6

Human generated sentence clusterings

A man’s friendships are one of the best
measures of his worth.

CHARLES DARWIN

An experiment was implemented to examine and compare human clustering strategies and
to create a gold standard for the automatic clustering experiments. In this experiment, human
annotators (section 6.1) were asked to sort sentences into distinct groups, following the guide-
lines for sentence clustering described in section 5.4. They were given a data set of six sentence
sets (section 3.3).

Analysis of the results of these experiments revealed two types of judges with distinct strate-
gies for clustering sentences (section 6.2.1). Other differences in human generated clusterings
are listed and discussed in section (Section 6.2.2). The inter-annotator agreement is discussed
in Section 6.2.3.

6.1 Human annotators

The data set was annotated by eight annotators – five women and three men, all of whom were
unpaid volunteers. They are all second-language speakers of English and hold at least a Master’s
degree. Five of them have a background in Computational Linguistics, two studied Physics and
one judge studied English and History.

The judges were given a task description and a list of guidelines. They worked indepen-
dently, i.e., they did not confer with each other or me.

Not every judge clustered each sentence set, but each sentence set was manually clustered
by at least two judges. Table 6.1 gives a detailed overview of the clusterings each judge created.
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Set Judge
A H I B S D O J Average

E
gy

pt
A

ir
s 85 75 44 53 64
c 28 19 15 20 21

out 106 116 147 138 127
out % 55 61 77 72 66
mode 2 2 2 2 2
max 9 8 8 6 9

H
ub

bl
e

s 85 93 89
c 20 25 23

out 114 106 110
out % 57 53 55
mode 2 4 2
max 8 8 8

Ir
an

s 69 34 52
c 19 11 15

out 116 151 134
out % 63 82 73
mode 3 2 2
max 6 5 6

R
us

hd
ie

s 70 74 41 45 58
c 15 14 10 12 13

out 33 29 62 58 46
out % 32 28 60 56 44
mode 2 4 2 3 2
max 14 12 12 8 12

Sc
hu

lz

s 54 38 130 46(74)
c 16 11 17 14(15)

out 194 210 128 202(177)
out % 78 85 52 81(72)
mode 2 2 7 2
max 7 7 17 7(10)

Vo
lc

an
o

s 92 57 46 65
c 30 21 16 22

out 70 105 116 97
out % 43 65 72 60
mode 2 2 2 2
max 9 5 6 7

Table 6.1: Details of manual clusterings: s = number of sentences in a set, c = number
of clusters, out = number of sentences that are not part of any cluster, % = percentage of
sentences that are not part of any cluster, mode = most frequent number of sentences in
a cluster, max = maximum number of sentences in one cluster
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6.2 Results

Even before a detailed examination and evaluation of the manually created clusters is carried
out, some conclusions can be drawn from the raw details of the clusters shown in table 6.1.

Most of the clusters created are clusters of two sentences: 126 of 320 clusters (124 of 303

clusters without clusterings from Judge J) have only two members. The percentage of sentences
that are not part of any cluster differs greatly between the sentence sets. Only 44% (on av.) of
the sentences from the Rushdie sentence set were filtered out, whereas 81% (on av.) where not
used for the clusterings of the Schulz sentence set.

Even without a detailed analysis of the collected clusterings, distinct differences between
the judges can be identified. There seem to be two groups of judges:

Gatherers Some judges always used more sentences than other judges in their clusterings
and thereby filtered out fewer sentences. These judges always used more sentences than average
and created often more clusters than average. Judge A, and Judge H belong to this group. They
used approximately twice as many sentences as Judge B or Judge S for their clusterings of the
Rushdie sentence set. These judges seem to gather all sentences that are similar to each other,
even if the similarity is not that obvious.

Hunters Judge B and Judge S used fewer sentences for the clusters and thereby filtered out
more sentences than the gathering judges. They created fewer clusters than the other annotators.
This is clearly visible in the Rushdie sentence set. Judge B and Judge S sorted out 60% and
56% respectively, whereas Judge A filtered out 32% of the sentences and Judge H 28%. These
judges “hunted” for the more obvious similarity relations between sentences.

Judge D, Judge I and Judge O clustered only one sentence set, therefore it is difficult to
assign them to one of the two groups of judges, but it seems that Judge D and Judge O belong
to the hunters and Judge I to the gatherers.

Judge J is little bit out of line. He only clustered the Schulz sentence set. He uses 2.4 times
more sentences than Judge A and even 3.4 times more sentences than Judge B, but only groups
them into 17 clusters, which leads to 7.6 ± 2.7 numbers of sentences in a cluster on average,
which is much more than any other judge.

While the differences between the judges can be determined by the number of sentences
used and number of clusters created, the groups of judges cannot be distinguished by gender
or academic background. In both groups men and women and different academic backgrounds
can be found.

In the following section I will examine the differences between these two groups in more
detail by looking directly at the clusterings the judges produced.
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.

Hunter Gatherer
119 150 229 246 119 150 229 246

8 57 123 152 155 237 245 8 57 123 152 155 237 245
165 243 165 243

102 126 140 102 126 140
153 179 227 240 36 38 144 153 227 236

133 179 240
98 99 168 173 132 173

5 160 161 159 211 5 160
159 185 241

12 16 242 4 12 242
95 220 95 147 220

133 177
11 186

1 6 42 156
24 228 230 238
43 145 157 164
56 151
20 116

Table 6.2: Comparison of clusterings for the Schulz sentence set created by a gatherer
and a hunter

6.2.1 Hunters and gatherers

In this section I point out and discuss the differences between the two groups of judges, the
hunters and the gatherers. For this purpose I compare clusterings from two judges (one gatherer
and one hunter) for three sentence sets (Iran, Schulz, Rushdie). For this comparison I aligned
the clusters to each other, i.e., I matched each cluster from the hunter with one cluster from the
gatherer. It is not always possible to match clusters and this can pose problems for evaluation
measures based on matching clusters. Here matching of clusters from different judges was
possible, which already indicates that the clusterings are similar. Tables 6.2, 6.3, 6.4 show
the selected clusterings. Green numbers indicate that both judges assigned the corresponding
sentence to the same cluster. Numbers coloured in orange represent sentences that both judges
used in their clustering but assigned them to different clusters. A red number stands for a
sentence that was included in a clustering by one judge, but was filtered out by the other.

For the Schulz sentence set the hunter (Judge B) created 11 clusters of which 9 could be
aligned to 11 clusters from the gatherer (Judge A) (see table 6.2). Two clusters created by the
hunter were mapped to two clusters each on the gatherer’s side. Besides the sentences in these
clusters only one common sentence (coloured in orange) was aligned to different clusters by the
two judges. Two clusters created by the hunter could not be mapped to any cluster created by
the gatherer and on the gatherer’s side 5 clusters consist of sentences the hunter did not include.

Another example is taken from the clusterings for the Iran sentence set (table 6.3). The
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Hunter Gatherer
25 47 66 94 4 10 25 47 66 167

23 48 23 32 48 94 164 179
65 152 160 31 65 152

24 161 24 161
14 15 64 141 14 64 68 141

15 19 20 63 157
17 58 68 192 17 58 142

69 155 72 155
82 154 82 83 154
81 153 81 153

84 85 158 159 84 85 86 158 159
0 3 1 78 151 1 78 151 168

6 7 53
75 76 162
11 12 169 173 174
77 143 147 148 150
9 27 39
56 74
18 57 59

Table 6.3: Comparison of clusterings for the Iran sentence set created by a gatherer and
a hunter

hunters are represented by Judge B and the gatherers by Judge I. Most of the sentences used
by the hunter are also used by the gatherer, whereas the gatherer generates 6 additional clusters
from sentences the hunter filtered out.

For the Rushdie sentence set the clusterings of Judge S (hunter) and Judge A (gatherer)
are used (see table 6.4). In this example, apart from three sentences, every sentence that was
used by the hunter was also used by the gatherer. On the other hand 28 sentences were used
by Judge A (gatherer) which were marked as irrelevant and filtered out by the hunter. These
sentences were used by the gatherer to create additional clusters or to add them to common
clusters. Excluding the clusters that were split or lumped (see below) the judges assigned only
three sentences to different clusters.

Gatherers create larger clusters One distinction between the judges that are considered to
be hunters and the judges that are considered to be gatherers is that the gatherers find more
sentences for a topic both judges agree on. For example the gatherer includes sentence 147 in
cluster 95 220 for the Schulz sentence set. The hunter created the same cluster but excluded
sentence 147.

Another example is the cluster consisting of the sentences 84, 85, 86, 158 and 159 from the
Iran sentence set (see table 6.3):
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Hunter Gatherer
2 11 21 31 38 66 2 11 21 30 31 38 48 61 66 79 86 94

22 61 74 79 86 94
22 74

63 68 89 63 68 82 83 84
82 88 96 88 96

78 92 78 81 90 92
25 26 33 46 59 64 87 95 19 25 26 27 33 44 46 51 52 54 59 64 95 99

27 75 75 100
3 9 14 57 3 9 35 55 57 65
35 58 65
24 43 60 24 43 60 62 73
48 62 73

23 50
32 67 20 32 47 67

29 42 70 71 72
30 97
36 80 101
16 18 34

Table 6.4: Comparison of clusterings for the Rushdie sentence set created by a gatherer
and a hunter

84 At the Vatican, Pope John Paul II sent aid to earthquake victims and a message of condolence to
Iranian leaders.

85 The Vatican said in a statement that the donation of an unspecified amount was to “provide for the
most immediate needs of the population hurt by this huge earthquake.”

86 John Paul also sent a telegram to the papal nuncio, or diplomatic representative, in Tehran saying the
pope “is praying fervently for the wounded and the families of the victims.”

158 Pope John Paul II was “very saddened” by the earthquake and has donated personal funds to help
victims of the disaster, the Vatican said.

159 Spokesman Joaquin Navarro did not specify the amount, but in the past the Pope has sent as much
as $ 100,000 for disaster relief from his personal funds.

Only the gatherer includes sentence 86. This sentence clearly is similar to the other four
sentences. It can only be guessed why the hunter did not include this sentence. Maybe the
hunter just missed that sentence or made a fine- grained distinction between the sentences – the
other four sentences all mention that the Pope sent aid.

Gatherers use more sentences to create more specific clusters Another interesting distinc-
tion between the gatherers and hunters can be found in the example from the Iran sentence set.
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Both judges create a cluster for the topic “Iran is willing to accept help from the U.S.A”. Both
judges agree on three sentences, i.e., that each of the sentences describe the topic:

14 Iran said today that it would welcome relief offered by its bitter enemy, the United States, to help
victims of the earthquake that has killed as many as 35,000 people, the State Department said in
Washington.

64 The State Department said Friday that Iran was willing to accept earthquake relief from the American
Red Cross and other U.S. humanitarian organizations.

141 Iran, at odds with the United States since the 1979 seizure of hostages at the U.S. Embassy in
Tehran, has said it would welcome relief from the American Red Cross and other U.S. humanitar-
ian groups.

Interestingly the hunter includes sentence 15 in this clusters:

15 The aid would be accepted through the American Red Cross and other U.S. humanitarian organiza-
tions, deputy spokesman Richard Boucher said.

The gatherer on the other hand splits off sentence 15 and, together with other sentences,
creates a more specific cluster. The gatherer saw a connection between this sentence and four
other sentences which the hunter did not include.

19 Boucher said Iran told the U.S. government that private donor agencies should contact the Iranian
Red Crescent, a humanitarian group that is the conduit for all outside assistance.

20 The U.S. government routinely channels humanitarian assistance through the Red Cross and other
donor groups.

63 Dymally, a member of the House Foreign Affairs Committee, praised President Bush’s offer of hu-
manitarian aid to Iran but said Bush must make sure the assistance is channelled through non-
government groups.

157 The United States on Friday sent $ 300,000 worth of relief supplies through the American Red
Cross and is planning more aid, State Department officials said.

The topic of the first cluster is more general, Iran accepts help from U.S.A. whereas the sec-
ond cluster is more specific, i.e., the help is channelled through non-government organizations.
For the gatherer the similarities between sentence 15 and the four additional sentences seemed
great enough to split them off and create a new, more specific cluster. Judge B however did not
include the four additional sentences neither as part of the general cluster nor as a cluster on its
own. He did not consider them important for the task.

Another example for this kind of splitting and adding can be found in the Schulz sentence
set. The hunter creates a cluster consisting of the sentences 153, 179, 227 and 240. The gatherer
splits this cluster into two clusters [179, 240] and [153, 227] and adds to the second cluster four
sentences, that the hunter did not include in his clustering.
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Hunters create fewer clusters Something else the two groups differ in is that the gatherers
consistently create more clusters than the hunters. The gatherers create clusters from sentences
the hunters did not consider as important or similar enough to other sentences to be included
in their clusterings. An assumption is that these additional clusters cover topics that are not
as important for the sentence set as the other clusters. Maybe the connections and similarities
between the members of these clusters are not as obvious as in the clusters both judges created.
To verify this assumption I will first have a closer look at the clusters the two groups of judges
do have in common.

The clusters both groups agree on represent central topics in the document sets. For the
Schulz sentence set the common clusters cover the following topics:

• Charles Schulz, the creator of the Peanuts died.

• Charles Schulz was diagnosed with cancer.

• Charles Schulz was born in Minnesota.

• His work reflected the reader’s internal world.

For the Iran sentence set, the clusters describe the topics:

• An earthquake of magnitude 7.7 occurred in northern Iran in June 1990.

• Thousands of people died in the earthquake.

• Countries worldwide offer help to Iran.

• Iran accepts help from U.S.A., Israel and South Africa.

• There was a similar devastating earthquake in Armenia in 1988.

The topics in the Rushdie sentence set which both groups of judges found are:

• Salman Rushdie was condemned to death by the Iranian leader Ayatollah Khomeini in
1989.

• Iran distanced itself from the death sentence.

• The death sentence against Salman Rushdie will stay in effect.

• Different groups offer rewards for Rushdies death.

• Rushdie has been living in hiding.

• Salman Rushdie is not allowed to enter India.
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• The Rushdie affair impairs the relations between Iran and European countries.

These listings show that the main topics of the sentence sets are covered by both groups of
judges.

In the following I have a closer look at some clusters which were only created by gatherers.
Here is one example for an additional cluster created by Judge A for the Rushdie sentence set:

30 Publication of Salman Rushdie’s ’“Satanic Verses” in 1988 caused an uproar among Muslims around
the world, who contended that it insulted Islam.

97 India was the first country in the world to ban “The Satanic Verses” after it provoked angry protests
from the Muslim community in 1988.

The first sentence talks about uproar among Muslims after the publication of “The Satanic
Verses” whereas the second sentence is about the ban of the book in India. On first glance these
two sentences have different subjects. But both sentences mention uproar among Muslims.
However the judge sees a connection between these sentences and values it important enough
to create a cluster.

In the next example the sentences are similar but the topics of the sentences are not essential
for the understanding of the documents about Charles Schulz:

20 Jodi Goldfinger of Stone Mountain, Ga., saluted her longtime favorite, Charlie Brown, who “thinks
he’s a loser but he’s not, because he keeps on trying no matter how often the “kite-eating” tree
chomps his kite.

116 No matter how often his kite crashed, no matter how often his team lost, Charlie Brown never
looked back, only up and onward.

The clusters that were only created by the gatherers cover topics that are not the main topics
of the sentence sets. The similarity between the individual sentences is not as clearly visible as
in the other clusters.

Spitting vs. lumping A good example for splitting and lamping can be found in the example
clusterings for the Rushdie sentence set. In three cases two clusters created by the hunter make
up one single cluster in the clustering of the gatherer. The following example shows five sen-
tences (24, 43, 60, 62, 73) which were assigned to one cluster by the gatherer but to two clusters
(24, 43, 60 and 62, 73) by the hunter:

24 Although the Iranian government has said in the past that it would not actively encourage anyone to
kill Rushdie, it has never explicitly revoked the death sentence, nor cancelled the bounty.

43 While stopping short of revoking a death sentence against Rushdie, Iran says it won’t adopt any
measures that threaten his life, or anyone connected to his book – The Satanic Verses.
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60 He did not, however, say that the government was rescinding the edict.

62 In Tehran, however, two influential clerics – Grand Ayatollah Mohammad Fazel Lankarani and Grand
Ayatollah Nouri Hamedani – were quoted as saying the edict, or fatwa, must be enforced and no
one can reverse it.

73 Last week, more than half the members of Iran’s hard-line parliament signed a letter saying the death

sentence stands.

The hunter distinguishes between the government that did not revoke the death sentence (24,
43, 60) and the hard-liner and clerics that say the death sentence stands (60, 73). The gatherer
assigns all five sentences to one cluster.
This phenomenon is known as lumping and splitting behaviour. A lumper is a judge that chooses
to emphasize on the similarities rather than on the differences. He generalizes and sees larger
units. On the other hand a splitter creates new clusters to classify sentences that differ in key
ways. A splitter emphasizes on the differences. He creates smaller but highly differentiated
units. I discuss this distinctive feature in detail in section 6.2.2. In this example the gatherer
creates a more general cluster – he is a lumper – and the hunter creates two distinct clusters
– he is a splitter. In the example from the Schulz sentence set (table 6.2) it is the other way
round. Two clusters created by the hunter are split into two clusters each on the gatherers
side. Splitting and lumping is a feature that can be found in human sentence clustering but this
particular feature can not be associated with only one of the two groups of judges.

In conclusion it can be said that there are two distinct type of judges – hunters and gatherers.
A gatherer uses more sentences for his clustering than a hunter. Almost all sentences a hunter
chooses to include in his clustering are also used by the gatherer. The additional sentences a
gatherer includes in his clustering are used to create:

• Larger clusters for topics both groups of judges have in common

• More specific clusters for topics both groups of judges agree on

• Additional clusters for more insignificant topics

Thus a gatherer produces more clusters than a hunter. Both groups of judges agree on the main
topics for a given sentence set and create clusters to represent them. The gatherers seem to
have a broader concept of similarity. Since the gatherers created additional clusters it can be
assumed that is it harder for gatherers than for hunters to agree among each other. In addition
to sentence clusters which represent key topics of a sentence set the gatherers create clusters
for less important topics. Humans can reach a consensus about the main topic of a document
collection reasonable well but with lower level of importance the agreement seems to diminish.
Hence the probability of different clusterings increase with every additional cluster.
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Often clusters created by one judge are split in two clusters by another judge. This behaviour
cannot be assigned to one of the two groups because in both groups judges can be found that
tend to lump or split. There are even judges that do not consistently split or lump (see section
6.2.2 for details).

6.2.2 Semantic differences in human generated clusterings

Each judge clustered the sentence sets differently. No two judges came up with the same sep-
aration into clusters or the same amount of irrelevant sentences. I distinguished between two
groups of judges, hunters and gatherers, and discussed characteristic behaviour, but there were
other types of differences which are not distinctive for one of the groups. While analysing the
differences between the judges I found three main categories.

Lumpers and splitters This phenomenon was already introduced in section 6.2.1. One judge
creates a cluster that from his point of view is homogeneous:

1. Since then, the Rushdie issue has turned into a big controversial problem that hinders the relations
between Iran and European countries.

2. The Rushdie affair has been the main hurdle in Iran’s efforts to improve ties with the European
Union.

3. In a statement issued here, the EU said the Iranian decision opens the way for closer cooperation
between Europe and the Tehran government.

4. “These assurances should make possible a much more constructive relationship between the United
Kingdom, and I believe the European Union, with Iran, and the opening of a new chapter in our
relations,” Cook said after the meeting.

Another judge however puts these sentences into two separate cluster (1,2) and (3,4).The
first judge (a lumper) chose a more general approach and created one cluster about the rela-
tionship between Iran and the EU, whereas the other judge (splitter) distinguishes between the
improvement of the relationship and the reason for the problems in the relationship. As dis-
cussed in section 6.2.1 this behaviour cannot be directly associated with one of the two groups
of judges. Even within clusterings created by one judge splitting and lumping can be found.
For example Judge B showed characteristic lumping behaviour in his clustering for the Schulz
data set. He created more general clusters, whereas other judges who created clusterings for this
data set created more fine grained clusters. On the other hand in his clustering for EgyptAir or
Rushdie Judge B created more specific clusters whereas other judges created general clusters.

Emphasis Two judges can emphasise on different parts of a sentence. One judge for example
assigned the sentence:
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All 217 people aboard the Boeing 767-300 died when it plunged into the Atlantic off the Mas-
sachusetts coast on Oct. 31, about 30 minutes out of New York’s Kennedy Airport on a night flight
to Cairo.

to a cluster of sentences about the number of casualties in that plane crash. Another judge
emphasized on the course of events and put it into a different cluster.

Inference Humans use different level of interference. One judge clustered the sentence

Schulz, who hated to travel, said he would have been happy living his whole life in Minneapolis.

together with other sentences which said that Schulz is from Minnesota although this sentence
does not clearly state this. This judge interfered from he would have been happy living his whole

life in Minneapolis that he actually is from Minnesota.

6.2.3 Inter-annotator agreement

After the clusterings created by the human annotators were modified in order to equalize the
number of sentences as described in section 5.5.5 the evaluation measures discussed in section
5.5 were used to calculate the inter-annotator agreement. Table 6.5 shows the results of the eval-
uation. The F -measure and the Fleiss-κ measure are only given for reasons of comparability.

The average scores for each evaluation measure over each set was calculated. In the lower
part of table 6.5 the average score of the comparisons between all annotators over all sets, the
average scores of the comparisons between the hunters (coloured in red) and between the gath-
erers (coloured in green) are shown. For each sentence set 100 random clusterings were created
and compared to the annotator’s clusterings totalling in 2600 comparisons. The average of these
comparisons is used as a baseline and shown at the bottom of the table. The lowest average simi-
larity values of all sets receives the Schulz sentence set. Within this set the comparisons with the
clustering of Judge J produce considerably lower values than the comparison between Judge A
and Judge B. As already discussed, Judge J used considerably more sentences. As a result, I
do not include the clustering of Judge J in the gold standard. The inter-annotator agreement
always exceeds the baseline.
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Set Annotators Evaluation measures
Vβ NV I F Fκ*

EgyptAir A B 0.61 0.22 0.11 0.31
A H 0.70 0.21 0.21 0.40
A O 0.63 0.24 0.10 0.29
B H 0.64 0.19 0.14 0.21
B O 0.68 0.16 0.13 0.28
H O 0.65 0.22 0.12 0.23
Average 0.65 0.21 0.14 0.30**

Hubble B S 0.79 0.15 0.32 0.54
Iran B I 0.67 0.15 0.15 0.31
Rushdie A B 0.62 0.28 0.26 0.41

A H 0.75 0.24 0.51 0.52
A S 0.67 0.26 0.27 0.37
B H 0.64 0.27 0.27 0.41
B S 0.75 0.16 0.39 0.49
H S 0.65 0.29 0.26 0.38
Average 0.68 0.25 0.33 0.43**

Schulz A B 0.79 0.07 0.29 0.52
A J 0.60 0.22 0.15 0.16
B J 0.53 0.22 0.15 0.12
Average 0.64 0.17 0.20 0.18**

Average(without J) 0.79 0.07 0.29 0.52
Volcano A B 0.66 0.27 0.11 0.31

A D 0.60 0.27 0.10 0.23
B D 0.69 0.18 0.14 0.34
Average 0.65 0.24 0.12 0.29**

Average all 0.67 0.21 0.21 0.34
all (without J) 0.68 0.21 0.22 0.40
hunter 0.73 0.16 0.25 0.41
gatherer 0.73 0.23 0.36 0.46

base all 0.28 0.65 0.06 -0.01
hunter 0.24 0.64 0.07 -0.01
gatherer 0.32 0.66 0.06 -0.01

Table 6.5: Inter-annotator agreement between the human annotators: the hunters are
coloured in red and the gatherers in green.

* For the calculation of Fκ all singletons were used.
** Here the Fleiss-κ for all judges were calculated.

The overall average Vβ is 0.68 and the NVI is 0.21. The agreement within the two groups
of judges is considerably higher, Vβ=0.73 (0.7275 for the hunters, 0.725 for the gatherers).
The hunters receive a lower NVI than average whereas the gatherers receive a higher than
average NVI. These results indicate that the agreement between the hunters is slightly better
than between the gatherers. The comparison with the baseline and the whole gold standard
receives Vβ of 0.28 and an NV I of 0.65. When compared to the hunter subset of the gold
standard the baseline clusterings receive a value for Vβ of 0.24 and when compared to the
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gatherers clusterings a Vβ of 0.32.

6.3 Conclusion

The clusterings created by the human judges can be used as a gold standard for sentence clus-
tering in multi-document summarization. The agreement between the judges is high and always
exceeds the baseline.

This gold standard can be used in different ways. The clusterings of all judges or just
the clusterings created by the hunters or the gatherers can be used to compare the output of a
sentence clustering system to. The complete gold standard (CGS) represents the whole range
of human sentence clustering. The subsets – hunter gold standard (HGS) and the gatherer gold
standard (GGS) – represent two kinds of human sentence clustering. One system cannot be of
both kinds. The best strategy is to choose the gold standard subset which best fits the purpose
of the system. If the goal is to create small and precise clusters of the main topics within a
document cluster, the system’s output should be compared to the HGS. If the goal is to find
more sentences for a topic or to find all redundant but not necessarily important information,
the clusterings produced by a system should be evaluated against the GGS.

The particular average inter-annotator agreement (J) can be used as an upper bound for
evaluation of the performance of a sentence cluster system. A lower bound can be defined by the
baseline (B). The score for the sentence cluster system (S) can then be mapped to these bounds,
so that it receives a score of 1 if the result is equal to the average inter-annotator agreement and
0 if the result of the algorithm is equal to the baseline. It would receive negative values if the
result is lower than the baseline. The linear function to normalize the system performance is
D = (S −B)/(J −B) (Radev et al., 2004). That means the normalized Vβ for CGS, HGS and
GGS are:

NCGSVβ = (S − 0.28)/0.38 (6.1)

NHGSVβ = (S − 0.24)/0.49 (6.2)

NGGSVβ = (S − 0.32)/0.41 (6.3)



Chapter 7

Experiments for optimizing parameters

No amount of experimentation can ever prove
me right; a single experiment can prove me
wrong.

ALBERT EINSTEIN

Several parameters need to be considered when clustering sentences for MDS and especially
when using LSA. These parameters, including vocabulary, size of semantic space or the number
of dimensions k, have not been evaluated in connection with sentence clustering. In this chapter
I describe the experiments to optimize these parameters for LSA and evaluate the results using
the gold standard described in chapter 6 and the evaluation measures described in chapter 5.

7.1 Fine-tuning the clustering algorithm

The first experiment focuses on fine-tuning the clustering algorithm. As described in section
4.1, several parameters are required to perform agglomerative hierarchical sentence cluster-
ing. These parameters include information about the linkage criteria which defines the distance
between clusters and about the distance metric, which defines how the distance is calculated.
These two parameters were optimized using the MSRPC as described in section 4.1. I use a
combination of the average linkage criterion and the cosine distance metric.

One parameter that was not determined using the MSRPC was the threshold for the cophe-
netic distance t, by which the cluster tree is cut in order to determine partitional clusters. This
parameter is optimized during the first experiment using part of the data set extracted from DUC
document clusters as described in section 3.3. From the data set a training set was extracted con-
sisting of 2 of the 6 sentence sets for which human clusterings are available. The two sentence
sets which are closest to the average number of sentences in a set were chosen. On average a
sentence set has 181 sentences, the Iran sentence set consists of 162 and the EgyptAir sentence
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set of 191 sentences, they were chosen for the training set hereinafter called the Iran EgyptAir
subset. The system and clustering algorithm used are described in section 3.

For each of the two sentence sets from the Iran EgyptAir subset a separate latent seman-
tic space is built including only the terms and sentences present in that sentence set. A co-
occurrence matrix TSM with i rows representing the terms and j columns representing the
sentences is created. Each cell ci,j includes the weighted frequency of occurrence of term i in
sentence j (see section 3.1.1). SVD is used on this matrix and the dimensions of the submatrices
are reduced to k dimensions. Using the reduced submatrices Sk and Dk clustering spaces CSk

with k ∈ {10, 25, 50, 75, 100, 125, 150, 175} were obtained. On basis of each of the eight CSk

for a sentence set four different automatic clusterings are built with t ∈ {0.10, 0.25, 0.50, 0.75}.
In total 32 (8 ∗ 4) clusterings for each sentences set are created. Each clustering is evaluated
and the best clustering L in dependence of k is determined resulting in one clustering for each
value of t and each sentence set.

7.1.1 Statistical significance

The Cochran Q-test (Siegel, 2001) was used to verify that different settings for t result in dif-
ferent clusterings. The data was processed to obtain a pairwise representation of the clus-
terings. This results in three matrices (one for each gold standard), where each row i repre-
sents a sentence pair and each column j a value of t. Each cell ci,j includes a binary value,
where 1 indicates that the two sentences are members of the same cluster in the clustering cre-
ated using the designated value of t, 0 if otherwise. For each gold standard subset, different
clusterings were chosen for evaluation, thus one matrix was built for each gold standard. On
the basis of these matrices the Cochran Q-test was performed. The null hypothesis H0 reads
that the probability that two sentences are members of the same cluster is equal for all t, i.e.,
p(t0.10) = p(t0.25) = p(t0.50) = p(t0.75). The alternative hypothesis H1 states that the probabil-
ities are different. The results show that this null hypotheses can be rejected in favour of H1.
For all three gold standard subsets the probability that H0 applies is p < 0.001. That is to say
the different settings of t have an effect on the creation of the clusterings, i.e., the clusterings
created with the different settings are significantly different.

7.1.2 Results

Tables 7.1, 7.2 and 7.3 show the results of the evaluation of the Iran EgyptAir subset. When
the automatic generated clusterings for the Iran EgyptAir subset are compared to the gatherer
subset of the gold standard (GGS, see table 7.1), the values for Vbeta lie in an interval of 0.54

to 0.57, the highest value is achieved when t = 0.50. For the V0.5 measure the best results are
achieved when t = 0.75 whereas t = 0.50 is again the best setting when the results are evaluated
with the NMI measure. The NV I shows a slightly different picture; here the best results are



CHAPTER 7. EXPERIMENTS FOR OPTIMIZING PARAMETERS 105

GGS
t 0.10 0.25 0.50 0.75
k 10 25 75 175
Vbeta 0.54 0.56 0.57 0.54
NVbeta 0.55 0.59 0.61 0.54
V0.5 0.54 0.56 0.58 0.59
NMI 0.54 0.56 0.57 0.56
NV I 0.33 0.32 0.33 0.38
F 0.1 0.1 0.08 0.06
Fκ 0.04 0.09 0.08 0.07

Table 7.1: Evaluation of the Iran EgyptAir subset against GGS for different values of t

achieved when t = 0.25. The Friedman test for the GGS shows that, with t as treatment
and the evaluation measures (Vbeta, NVbeta, V0.5,NMI) and NV I) as blocks, the values are
significantly different. That is to say there is a difference in the quality of the clusterings for
different values of t (X2

GGS = 8.28 with 0.05 > p > 0.02). Since three of the five evaluation
measures under consideration rise to their best values when t = 0.50 and drop considerably
again when t = 0.75, it is concluded that t = 0.50 works best for the GGS.

HGS
t 0.10 0.25 0.50 0.75
k 25 50 175 175
Vbeta 0.62 0.63 0.61 0.51
NVbeta 0.78 0.80 0.76 0.56
V0.5 0.61 0.63 0.60 0.60
NMI 0.63 0.63 0.63 0.56
NV I 0.21 0.23 0.20 0.38
F 0.11 0.11 0.11 0.07
Fκ 0.17 0.18 0.16 0.17

Table 7.2: Evaluation of the Iran EgyptAir subset against HGS for different values of t

For the HGS the results are clearer and the best setting is easier to specify. For four of
the five evaluation measures (Vbeta, NVbeta, V0.5 and NMI) the best results are achieved when
t = 0.25. Only the NV I measure reaches its best value when t = 0.50. Once more the
Friedman test was used to establish if the clusterings created using different values for t are sig-
nificantly different. Again the different settings for t are considered to be the treatments and the
evaluation measures (Vbeta, NVbeta, V0.5 ,MNI and NV I) are the blocks. With X2

HGS = 9.72

with 0.05 > p > 0.02 it can be said that the results are different. Thus I conclude that t = 0.25

is the best setting when the automatically created clusterings are compared to the HGS.

If all human clusterings together are used to form the gold standard (CGS) the values of
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CGS
t 0.10 0.25 0.50 0.75
k 10 50 100 100
Vbeta 0.56 0.57 0.55 0.48
NVbeta 0.72 0.74 0.69 0.51
V0.5 0.61 0.57 0.57 0.57
NMI 0.58 0.58 0.57 0.52
NV I 0.33 0.25 0.29 0.43
F 0.11 0.11 0.09 0.07
Fκ 0.15 0.16 0.15 0.17

Table 7.3: Evaluation of the Iran EgyptAir subset against CGS for different values of t

Vbeta range from 0.48 to 0.57 for t = 0.25. The results for NVbeta and NV I also indicate that
the best setting for t when the clusterings are compared to CGS is t = 0.25. On the other
hand the highest values of V0.5 and NMI are reached when t = 0.25. Again the Friedman test
showed that the different setting of t results in significantly different results (X2

CGS = 8.04 with
0.05 > p > 0.02).

For all three gold standard subsets the value of Vbeta rises to a maximum value with increas-
ing t. This maximum is reached at t = 0.25 for HGS, t = 0.50 for the GGS and t = 0.25 for
the CGS. After the maximum is reached the values drop to 0.54 for the GGS, to 0.51 for the
HGS and to 0.53 for the CGS. A similar behaviour can be observed with the other evaluation
measures. In the following I focus on the HGS and GGS. I omit the CGS because it is a com-
bination of the two subsets. In the experiment t = 0.25 provides the best result for the CGS,
which is the same setting as for the HGS. This might be because the hunter subset is larger than
the gatherer subset.

7.1.3 Discussion

When the GGS is used as ground truth for the evaluation, the best results are achieved when
t = 0.50. Whereas for the comparison with the HGS the clusterings created with the threshold
t = 0.25 obtain the highest evaluation scores. How is the parameter t linked to the human
behaviour of hunting and gathering? What influence does the parameter t have on the flattening
of a hierarchical cluster tree and how is it connected to the similarity with the clusterings created
by humans? As described in section 6.2.1, the gatherers created more clusters and included
more sentences in their clusters. It also seems that the sentences in a cluster created by a gatherer
are not as similar as in a cluster created by a hunter. Figure 7.1 shows two dendrogramss for
the EgyptAir dataset. In both dendrogramss the cluster trees are identical. As described in
section 4.1, the height of the links between the objects (clusters or single sentences) represent
the distance between them, known as cophenetic distance. By using the threshold t as a cut-off
criterion the tree is cut at a horizontal line where distance = t and all links above this line , i.e.,
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Figure 7.1: Dendrograms for clusterings of EgyptAir dataset with t = 0.5 and t = 0.25

with a height > t, are ignored. The upper dendrogram shows the cluster tree of the EgyptAir
dataset which is cut at t = 0.5 resulting in 46 clusters and 53 singletons. The lower dendrogram
shows the cluster tree cut at t = 0.25. Here the separation results in only 16 clusters and a
lot more singletons. Table 7.4 shows the number of clusters11 and singletons for the EgyptAir

11These numbers include all clusters created by the algorithm. Later these clusters are filtered. Only clusters
that contain sentences from different documents are allowed.
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sentence set for different t. A lower t here results in fewer clusters and more singletons than a
higher value for t. This is equivalent to the behaviour of humans considered to be hunters and
gatherers. Hunters create fewer clusters and use fewer sentences than gatherers.

t clusters singletons
0.10 7 176
0.25 16 151
0.50 46 53
0.75 48 7

Table 7.4: Number of clusters and singletons in relation to t for the EgyptAir sentence set
with k=75

Analysis of human behaviour in sentence clustering in section 6.2.1 suggested that gatherers
tend to build clusters from sentences that are not equally similar to each other. By comparing
clusters created by a gatherer with cluster created by a hunter it was apparent that the two groups
agreed on the general topic of a cluster, but that the gatherer included additional sentences,
whose connection to the topic of the cluster was not immediately visible. The assumption was
that this might result in lower intra cluster similarity. The problem was that within the human
generated cluster it was not possible to calculate intra- and inter-cluster similarity since the hu-
man did not determine or rate the degree of membership of a sentence to a cluster. However it is
possible to calculate these internal evaluation measures for the automatic generated clusterings.
Table 7.5 shows the intra- and inter-cluster similarity for the two clusterings for the EgyptAir

t intra inter
0.1 0.93 0.02

0.25 0.85 0.04
0.5 0.65 0.05

0.75 0.49 0.06

Table 7.5: Intra- and inter-cluster similarity for clusterings of the EgyptAir sentence set
with t = 0.5 and t = 0.25 and k=75

sentence set created with different t. The intra-cluster similarity decreases with increasing t
whereas the inter-cluster similarity, i.e., the similarity between clusters grows when the value
of t increases. These result are consistent with the assumptions made above.

In conclusion it can be said that specific human behaviour with regard to sentence clustering
for MDS can be emulated to a certain degree by fine-tuning the cluster algorithm. The cut off
threshold t can be used to adjust the clustering algorithm to produce clusterings that exhibit
typical features of a hunter or a gatherer.
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Having said that, it is striking that the comparison with the HGS almost always receives
higher evaluation values than the comparison with the GGS. As can be seen in tables 7.1 and
7.2 only for t = 0.75 is the Vbeta for the HGS smaller than for the GGS. In section 6.2.1 I
made the assumption that it might be harder for gatherers to agree on clusters. In addition
to sentence clusters which represent key topics of a sentence set the gatherers create clusters
for less important topics. Humans can reach a consensus about the main topic of a document
collection reasonably well (Barzilay and Elhadad, 1997; Marcu, 1997) but with lower level of
importance the agreement seems to diminish. Hence the probability that different clusterings
are created increases with every additional cluster. This fact could lead to continuously lower
evaluation values. To confirm this hypothesis I calculated the normalized Vbeta as described in
section 6.3. The normalized Vbeta puts the result into perspective with regard to the upper bound
and lower bound of the evaluation scale. In principle the Vbeta can range between 0 and 1 but
the interjudge agreement (J) acts like an upper bound for the performance of the system (Radev
et al., 2000). I would assume that with the normalized Vbeta the score for the two gold standard
subset are similar. Unfortunately the results did not confirm this hypothesis. In section 6.2.3
both groups of human annotators receive a similar average inter annotator agreement (hunter:
0.7275, gatherer 0.725) and therefore, even with the NVbeta, the comparison with the HGS
receives higher values than the CGS. This might be due to the fact that this kind of clustering
algorithm favours the creation of clusterings that are more similar to the clusterings of hunters.
On the other hand it might be due to the selection of sentence sets. The sentence sets were
chosen so that one generic summary can be created. The requirement was that a set describes a
single person or event. This selection might already favour hunter-like clusterings. The gatherer
subset of the gold standard might be more useful to summarization system which generate topic
focused summaries. But these are only the results for the Iran EgyptAir subset. If this finding
holds true for the whole data set remains to be seen.

Nonetheless in consequence it can be said that the clustering algorithm can be tuned to act
more like a gatherer or more like a hunter by changing the value of t. Following this experiment
the threshold value t will be set to 0.5 to create clusterings that are compared to the GGS and to
0.25 to create clusterings that are compared to the HGS.

7.2 The influence of different index vocabulary

In this section I describe experiments concerning the different options for creating an index
vocabulary. As explained in section 4.2 the selection of an index vocabulary is a vital step
for any application using vector spaces. Basic criteria for creating an index vocabulary like
excluding stop words, stemming and weighting have been evaluated using IR test corpora as
described in section 4.2.1.

The objective of this experiment described here is to test whether different index vocabular-
ies listed in section 4.2.2 have an influence on the quality of sentence clusterings.
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Here eight different approaches to index term selection were tested. The first vocabulary
(called Standard Vocabulary or SV in the following) includes all tokens separated by white
spaces, which are not on the SMART stop word list. Another vocabulary called NUM1 includes
all terms from the Standard Vocabulary but all numbers are replaced by the character string
#num. The NUM2 also focuses on processing numbers. It uses the same tokens as in the Stan-
dard Vocabulary, but here all numbers smaller than 1492 and larger than 3000 are replaced by
their number of digits. For example ‘29987’ becomes ‘00000’ and ‘137’ becomes ‘000’. The
numbers between 1492 and 3000 are considered to be year dates and are kept. The next vocab-
ulary used called COLL consists of the tokens from the Standard Vocabulary and in addition of
multi-word expressions extracted from the data set using the NLTK collocation module. The
vocabularies COLL+NUM1 and COLL+NUM2 use the same terms as the COLL vocabulary but
the numbers are processed as in the NUM1 and NUM2 vocabulary respectively. The last group
of vocabularies tested are NV, NV+COLL and N. For the NV vocabulary the Standard Vocab-
ulary was filtered for nouns and verbs only. Accordingly the NV+COLL vocabulary includes
all tokens from NV and the collocations extracted with the NLTK collocation finder. The N vo-
cabulary only consists of nouns from the SV. The index vocabularies created with the different
index selection methods described above resulted in different term-by-sentences matrices for
the complete data set consisting of all six sentence sets, whose dimensions are shown in table
7.6. In these experiments one TSM for each vocabulary option was built.

SV Num1 Num2 Coll Coll +Num1 Coll +Num2 N NV NV + Coll

Terms 1710 1620 1652 1753 1663 1695 696 1072 1115
Sentences 1088 1088 1088 1088 1088 1088 1088 1088 1088

Table 7.6: Size of different index vocabularies

The largest TSM was created for the COLL vocabulary, the smallest for the N vocabulary.
After these matrices were created and SVD was performed, the clusterings were created on
the basis of reduced clustering spaces (see section 3.2). As described in section 7.1, for each
sentence set (here only the sets from the training set) and each value of k (k < rank(TSM)

and k ∈ [10, 25, 50, 75, 100, 125, 150, 175, 200, 225, 300, 400, 500, 750, 1000]) two clusterings
are created , one with the clustering algorithm’s parameter t set to 0.50, which is then compared
to the GGS, and the other one with t = 0.25, which is compared to the HGS. This resulted in 15
for each index vocabulary and each gold standard. For each of the two gold standards used and
each vocabulary under consideration the best clustering L in dependence of k was determined.

7.2.1 Statistical significance

The Cochran Q-test (Siegel, 2001) was used to verify that the use of different index vocabularies
results in different clusterings. The data was processed to obtain a pairwise representation of
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the clusterings. This results in two matrices (one for each gold standard), where each row
i represents a sentence pair and each column j a vocabulary. Each cell ci,j includes a binary
value, where 1 indicates that the two sentences are members of the same cluster and 0 otherwise.
Since for each gold standard different clusterings were chosen for evaluation, one matrix was
built for each gold standard. On the basis of these matrices the Cochran Q-test was performed.
The null hypothesis H0 reads that the probability that two sentences are members of the same
cluster is the same for all eight index vocabularies. The alternative hypothesis H1 states that the
probabilities are different. The results show that this null hypothesis can be rejected in favour
of H1. For both gold standards the probability that H0 applies is p < 0.001. That is to say the
different index vocabularies have an effect on the creation of the clusterings, i.e., the clusterings
created using different index vocabularies are indeed different.

7.2.2 Results

GGS
SV Num1 Num2 Coll Coll +Num1 Coll +Num2 N NV NV + Coll

k 200 250 275 275 275 300 500 400 550
Vbeta 0.58 0.57 0.59 0.57 0.56 0.58 0.50 0.55 0.54
NVbeta 0.64 0.61 0.66 0.61 0.60 0.65 0.43 0.57 0.53
V0.5 0.59 0.58 0.59 0.58 0.58 0.58 0.49 0.55 0.52
NMI 0.58 0.57 0.59 0.57 0.57 0.59 0.50 0.55 0.54
NV I 0.32 0.33 0.30 0.33 0.33 0.30 0.35 0.33 0.31
F 0.08 0.09 0.10 0.08 0.08 0.09 0.46 0.21 0.20
Fκ 0.10 0.08 0.09 0.07 0.07 0.08 -0.05 0.03 0.02

Table 7.7: Evaluation of the Iran EgyptAir subset against GGS for different index vocab-
ularies

Table 7.7 shows the results of the evaluation of sentence clustering using different index
vocabularies against the GGS. For three of the five evaluation measures under consideration the
NUM2 vocabulary obtains the best scores. The highest V0.5 score was received by the SV and
the best NV I score by the COLL+NUM2 vocabulary.

The scores were used for a significance test with the Friedman signed rank test. The null
hypothesis H0 implies that the clusterings produced on basis of different indexing vocabularies
are of the same quality whereas the alternative hypothesis H1 states that the different index
vocabulary contribute to the creation of different quality clusterings. Remember the Cochran
Q-test has only proven that the clusterings are different, but not whether one clustering is better
than the other. On basis on the Friedman test H0 could be rejected only with 0.1 > p > 0.05,
which lies above the rejection threshold α = 0.05.

With a series of Wilcoxon signed rank tests I analysed which vocabulary performs best in
comparison to the other. These tests revealed that the NUM2 performs significantly better (+)
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than all other vocabularies. The NV vocabulary performed significantly worse (−) than six
other vocabularies and the N vocabulary lead to the lowest quality clusterings. From these
significance tests results an order of precedence (see table 7.8) can be created for the index
vocabulary with regard to the evaluation against the GGS.

Vocabulary + -

NUM2 8 0
COLL+NUM2 7 1
SV 6 2
COLL 5 3
NUM1 4 4
COLL+NUM1 3 5
NV 2 6
NV+coll 1 7
N 0 8

Table 7.8: Order of precedence of index vocabularies for GGS

HGS
SV Num1 Num2 Coll Coll +Num1 Coll +Num2 N NV NV + coll

k 100 100 100 125 100 100 250 125 175
Vbeta 0.66 0.65 0.66 0.67 0.65 0.65 0.61 0.62 0.62
NVbeta 0.86 0.83 0.86 0.88 0.84 0.84 0.75 0.78 0.78
V0.5 0.66 0.65 0.66 0.67 0.66 0.66 0.60 0.62 0.61
NMI 0.66 0.65 0.66 0.67 0.65 0.65 0.62 0.63 0.63
NV I 0.21 0.21 0.21 0.20 0.22 0.22 0.23 0.23 0.21
F 0.13 0.12 0.13 0.14 0.13 0.13 0.33 0.21 0.13
Fκ 0.21 0.19 0.20 0.21 0.19 0.20 0.05 0.08 0.12

Table 7.9: Evaluation of the Iran EgyptAir subset against HGS for different index vocab-
ularies

Table 7.9 shows the results of the evaluation of the usage of different indexing vocabularies
with regard to the HGS. The values for the HGS were tested for significance with the Friedman
signed rank test. The null hypothesis H0 implies that the clusterings produced on basis of
different index vocabularies are of the same quality whereas the alternative hypothesisH1 states
that the different index vocabulary contribute to the creation of different quality clusterings. On
basis on the Friedman test H0 could be rejected with p < 0.01. So the clusterings created with
different index vocabularies are significantly different in quality.

A sequence of Wilcoxon signed rank tests shows that the COLL vocabulary performs signif-
icantly better than the other seven vocabularies. The vocabularies can be ranked according to
these tests (see table 7.10). Again the N vocabulary performs significantly worse than the other
vocabularies.
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Vocabulary + -
COLL 8 0
NUM2 7 1
SV 6 2
COLL+NUM2&COLL+NUM1 4 3
NUM1 3 5
NV & NV+coll 1 6
N 0 8

Table 7.10: Order of precedence of index vocabularies for HGS

Both rankings show that the index vocabularies based on nouns and verbs (N, NV and
NV+COLL) always perform worse than the other (full) index vocabularies. The vocabulary
where all numbers are replaced with #num (NUM1) obtains better scores than the noun/verb
vocabularies, but worse than the others. For the GGS the vocabulary versions where the collo-
cations are added receive lower scores than the same version without the collocations. Here the
vocabularies where the numbers are replaced with the number of digits (NUM2) perform best.
For the HGS the COLL vocabulary works best, followed by the NUM2 and the SV vocabulary.
Overall the differences in the scores are fairly small. That means that the differences in quality
are significant but not very high.

7.2.3 Discussion

Reducing the index terms to nouns or noun and verbs does not seem to have a positive effect
on sentence clustering. On the contrary, vocabularies that include only nouns or nouns and
verbs perform worse than the other vocabularies. For IR it was claimed that nouns bear the
most semantic meaning and are the main characteristics to distinguish documents (Baeza-Yates
and Ribeiro-Neto, 1999). Thus some information retrieval applications use only nouns as index
terms. However for automatic sentence clustering for MDS it is not sufficient to represent a
sentence by nouns and verbs, as the results have shown.

Furthermore it seems to be important to keep the numbers. The vocabularies NUM1 and
COLL+NUM1 where all numbers are replaced with #num obtain lower scores then the vocabu-
laries where the year dates are kept and the remaining numbers are replaced with their numbers
of digits (NUM2). For both gold standard subsets tested the NUM2 vocabulary results in better
quality clusters than the standard vocabulary. Thus numbers are important to sentence cluster-
ing. However it seems that the order of magnitude of a number is more important than the exact
number. In newspaper articles numbers can vary. For example an article that was published
shortly after a disaster has different numbers of casualties than an article that was published
later when most of the casualties were reported. That was the reason why the human anno-
tators were allowed to cluster sentences that vary in numbers. So the system should have the
same possibilities. This can be achieved by representing numbers by their number of digits.
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Therefore the num2 vocabulary works best for gold standards were variation in numbers are
allowed.

When compared to the GGS the version of the vocabularies where collocations are included
always receives lower scores than the vocabularies without these additional entries. Similarly
the vocabularies where the numbers are replaced by the number of digits outperform their com-
plement with the original numbers.

The situation is different when the clusterings are compared to the HGS. Here COLL out-
performs its complement COLL+NUM2. The COLL vocabulary results in the term index with
the most entries (1753). Maybe the hunters do not concentrate on single words in a sentence
to find similarity but on the semantics of the words. Whereas the gatherer sometimes cluster
together sentences that just share the same words and therefore a vocabulary with fewer index
terms is sufficient (1652).

In conclusion it can be said that the NUM2 works well for both gold standards. However the
differences in the qualities of the clustering produced with the full vocabularies are marginal,
so that each of them could be used. For the later comparison with the standard VSM I use the
NUM2, COLL and SV vocabularies.

7.3 The influence of different sized spaces

As explained in section 4.3 the size of the latent semantic space in which sentence similarities
are calculated might have an effect on sentence clustering for MDS. In the first experiment
described in section 7.1 each sentence set was represented within its own latent semantic space
(called LOCAL LSA). In other words for each set a separate Term-Sentence Matrix (TSM) was
created on which SVD was performed and different reduced clustering spaces were created
using a range of dimensions where k < rank(TSM) and k ∈ [10, 25, 50, 75, 100, 125, 150,
175, 200, 225]. For each set the clusterings were created within these clustering spaces.

I will examine two more possible setups, the EXTENDED LOCAL LSA and the GLOBAL

LSA(described in section 4.3). When the EXTENDED LOCAL LSA is used, one TSMALL is
created for all the sentence sets used. SVD is performed on this single TSMALL and different
rank k approximations are created. Here k < rank(TSM) and k ∈ [10, 25, 50, 75, 100, 125,
150, 175, 200, 225, 300, 400, 500, 750, 1000]. The GLOBAL LSA is similar but in addition to
the six sentence sets, more sentences from other DUC documents are added to the TSM before
SVD is applied and the clustering spaces are created with k < rank(TSMbig) and k ∈ [10, 25,
50, 75, 100, 125, 150, 175, 200, 225, 300, 400, 500, 750, 1000, 2500, 5000].

The idea of testing different space options is based on the assumption that a larger semantic
space might contribute to a more robust representation of sentences (Hachey et al., 2006) and
a reliable semantic space (Barzilay and Lapata, 2008). Banko and Brill (2001) showed that
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increasing corpus size has a positive effect on machine learning for natural language disam-
biguation. On the other hand (Li et al., 2006) and (Wiener et al., 1995) suggest using LOCAL

LSA, expecting a representation that will be more sensitive to small, localized effects (see sec-
tion 4.3).

Using the SV the spaces created with the different space size options resulted in different
term document matrices whose dimensions are shown in table 7.11.

Option Set Terms Sentences
LOCAL EGYPTAIR 326 191

HUBBLE 342 199
IRAN 321 185
RUSHDIE 207 103
SCHULZ 332 248
HUBBLE 290 162

EXTENDED LOCAL all six sentence sets 1710 1088
GLOBAL all six sentence sets + 5000 additional sentences 7421 6088

Table 7.11: Size of different latent semantic spaces

After these matrices were created and SVDs were performed, the clusterings were obtained
from the reduced spaces (see section 3.2). As described in the previous section, for each sen-
tences set (here only for the sets from Iran EgyptAir subset) and each value of k two clusterings
are created, one with the clustering algorithm’s parameter t set to 0.50, which is then compared
to the GGS, and the other one with t = 0.25, which is compared to the HGS. For each space
option and each gold standard ten or more clusterings (depending on the number of k-values
tested for the specific space option) were created. For each of the two gold standard subsets
used and each space option under consideration the best clustering L in dependence on k was
determined.

7.3.1 Statistical significance

The Cochran Q-test (Siegel, 2001) was used again to verify that the use of different space op-
tions result in different clusterings. The data was processed to obtain a pairwise representation
of the clusterings. This results in two matrices (one for each gold standard), where each row i

represents a sentence pair and each column j a space option. Each cell ci,j includes a binary
value, where 1 indicates that the two sentences are members of the same cluster in the clus-
tering created with designated space and 0 if otherwise. Since for each gold standard different
clusterings were chosen for evaluation, one matrix was built for each gold standard. On the
basis of these matrices the Cochran Q-test was performed. The null hypothesis H0 reads that
the probability that two sentences are members of the same cluster and is the same for all three
space options. The alternative hypothesis H1 states that the probabilities are different.
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The results show that the null hypotheses can be rejected in favour of H1. For both gold stan-
dards the probability that H0 applies is p < 0.001. That is to say the different space options
have an impact of the creation of the clusterings, i.e., the clusterings created in the different
spaces are significantly different.

7.3.2 Results

GGS (t = 0.50)
Local Extended local global

k 75 200 750
Vβ 0.57 0.58 0.56
NVβ 0.61 0.64 0.58
V0.5 0.58 0.59 0.55
NMI 0.57 0.58 0.56
NV I 0.33 0.32 0.29
F 0.08 0.08 0.11
Fκ 0.08 0.10 0.06

HGS (t = 0.25)
Local Extended local Global

k 50 100 300
Vβ 0.63 0.66 0.63
NV β 0.80 0.86 0.79
V0.5 0.63 0.66 0.61
NMI 0.63 0.66 0.63
NV I 0.23 0.21 0.20
F 0.11 0.13 0.10
Fκ 0.1816 0.21 0.16

Table 7.12: Evaluation of clusterings of Iran EgyptAir subset created in different sized
latent semantic spaces against GGS and HGS

Table 7.12 shows the results of the evaluation of sentence clustering using different sized
spaces. The Friedman test on these values – where the options are considered to be the treat-
ments and the measures the blocks – shows that the treatments produce different quality clus-
terings.

The EXTENDED LOCAL LSA receives the highest values from four of the evaluation mea-
sures namely Vβ , NVβ , V0.5 and NMI . The NV I measures gives a different result. Here the
GLOBAL LSA performs best. The Wilcoxon signed rank test (Siegel, 2001), considering the
values of all five evaluation measures from both gold standards, showed that the EXTENDED

LOCAL LSA performs significantly better then the local LSA with p < 0.005. It also showed
that the EXTENDED LOCAL LSA performs significantly better then the GLOBAL LSA with
0.025 > p > 0.01. The values also suggest that the LOCAL LSA outperforms the GLOBAL

LSA. However the Wilcoxon signed rank test cannot verify this assumption (p cannot be de-
termined, it is only known that p > 0.025). Even the weaker Sign test (Siegel, 2001) can only
confirm this hypothesis with p = 0.055, which is only just higher than usual level of significance
α = 0.05.

7.3.3 Discussion

In this experiment the two gold standards respond similarly. In the previous experiments the
gold standards behaved differently with regard to the parameter t. The parameter t has a direct
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impact on the separation of a hierarchical clustering tree into distinct clusters. In this experiment
different sized spaces were tested. In contrast to the parameter t, the different spaces have an
impact on the creation of the cluster tree.

In some experiments a larger more general space led to an improvement in the quality of
the results (see Banko and Brill, 2001; Foltz et al., 1998; Barzilay and Lapata, 2008). On the
other hand in order to emphasize smaller, more localized effects a smaller (local) space seems
to perform better (see Li et al., 2006; Wiener et al., 1995). In the case of sentence clustering
for MDS the local spaces perform best. Especially the EXTENDED LOCAL space outperforms
the other two spaces tested. This EXTENDED LOCAL space is a compromise between the two
extremes of local space and global space. The extended local space combines the strategy of
the global space with that of the local space by using only the sentence set that is to be clus-
tered, but building one space from them instead of six separated spaces. Thereby the semantic
representation becomes more robust as some background information, which in contrast to the
global space was not selected at random, was added.

However this may not always be the case. The corpus used in this experiment consists
entirely of newspaper articles, which is a special text genre. All articles are factual, non-fiction
texts, which are targeted at a general mass audience. In addition the topics of the articles are
limited to three categories (i) single natural disaster, (ii) single event and (iii) biography. As
a result the sets are quite similar with regard to their structure and topic category. Thus the
articles are not in contradiction to each other, which means that for example there are only a
very few words that are used ambiguously, e.g., the term plane always refers to an aeroplane
in these articles and not to a plain or extension. Furthermore two sentence sets talk about the
Iran: (i) the Rushdie set is about the death sentence proclaimed by Iran on Rushdie (ii) the Iran
set talks about an earthquake in Iran. The sets Iran and Volcano both talk about natural disaster
and the sets EgyptAir and Hubble both have vocabulary about flying and planes in common.
That implies that the word usage patterns are similar. Thus the fact that the EXTENDED LOCAL

LSA space performs better than the LOCAL LSA space might be due to these similarities.
Nonetheless the results show that the local spaces perform better than the global LSA spaces.

The global space represents an extension of the EXTENDED LOCAL space with random se-
lected background information. This added background information seems to bias the word
usage patterns in the sentences. This is undesirable in sentence clustering. Here small differ-
ences or similarities are important to be able to cluster sentences of similar meaning in one
group. Therefore a global LSA space is not applicable to sentence clustering for MDS.

For other application it might be advisable to create bigger semantic spaces or create a huge
background corpus. However for sentence clustering using LSA a localized corpus works best.
In sentence clustering small differences in word usage and term relations are important in order
to group sentences into different topic groups therefore a homogenous space works better. This
localized space can consist only of the sentences to be clustered or in additional of sentences
from documents with similar topics.
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7.4 The optimal number of dimensions

As described in section 4.4 the number of dimensions k of the clustering space is essential
to the performance of LSA. If too many dimensions are kept, the latent semantic structure
cannot be revealed since the documents and words are not projected near enough to each other
and too much noise is left. If k is too small then too many words and/or sentences will be
superimposed on each other, destroying the latent semantic structure. In this section I describe
several experiments that focus on the optimal number of dimensions in connection with other
parameters for sentence clustering.

7.4.1 LSA pattern

The first analysis was carried out to find out whether the quality of the resulting clusterings
changes for different numbers of dimensions k. When quality is plotted against k for LSA
in IR the graph shows low performance for very few dimensions, then the quality improves
considerably until it peaks and falls off slowly.

For this experiment I compared the output of the clustering algorithm for the Iran EgyptAir
subset with the two subsets of the gold standard GGS and HGS using the Vbeta evaluation
measure. The standard vocabulary was used as indexing vocabulary and the EXTENDED LOCAL

LSA space containing all six sentence sets was built. In this experiment different k dimensional
clustering spaces were built where k ∈ [10, 25, 50, 75, 100, 125, 150, 175, 200, 225, 300, 400,
500, 750, 1000].

Figure 7.2 shows the development of the quality of the clustering solutions measured in
Vbeta for different numbers of dimensions k of the clustering space.
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Figure 7.2: LSA pattern in sentence clustering
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The graph shows the same characteristics as a plot for LSA in IR. If only very few dimen-
sions are used the quality of the clusterings is very low and lies below the quality of sentence
clustering using the standard VSM. The performance peaks at 100 dimensions when the au-
tomatic generated clusterings are compared to the hunters and at 200 when compared to the
gatherers. After this maximum is reached both curves drop off slowly and approach the level of
quality attained by the VSM.

For this training data set and this application the quality of the clusterings created using
LSA is higher than that using the VSM for most of the number of dimensions tested.

7.4.2 The optimal number of dimensions: dependence on t

The second experiment regarding the optimal number of dimensions is intended to find out
whether the optimal number of dimensions depends on the cophenetic distance used to cut the
clustering tree in partitional clusters.

For this analysis I used the results from the fine-tuning experiment. The results described
in section 4.1 were obtained comparing the automatic created clusterings for the Iran EgyptAir
subset with the two subsets of the gold standard GGS and HGS using the evaluation measures
described in section 5.5. The standard vocabulary was used as indexing vocabulary and local
spaces were built. In this experiment different k dimensional clustering spaces were built where
k ∈ [10, 25, 50, 75, 100, 125, 150, 175]. For each t the number of dimensions k was chosen
which lead to the best quality clustering in comparison to the HGS and GGS.

Figure 7.3 displays the results for this experiment. The optimal number of dimensions kbest
is plotted against the distance parameter t.
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Figure 7.3: Optimal number of dimensions in relation to the threshold t

It is striking that the optimal number of dimensions kbest grows with increasing t. The results
are similar for the EXTENDED LOCAL LSA space.
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The comparison of the optimal number of dimensions kbest for the HGS with kbest for GGS
shows that for the same t less dimensions are needed for the GGS. At the same time the optimal
t for the GGS is higher than for the HGS. This means that in the end more dimensions are
needed for the GGS as for the HGS.

In conclusion it can be said that the number of dimensions k depends on threshold t of the
cluster algorithm. The higher the threshold the more dimensions are needed to obtain an optimal
result.

7.4.3 The optimal number of dimensions: dependence on the LSA space

In this section I show that the optimal number of dimensions varies with the number of sentences
in a clustering space. In section 7.3 I described that the quality of the automatically generated
clusterings is contingent on the size of the clustering space. Here I analyse how the optimal
number of dimensions kbest varies over the different spaces.

I used the results from the experiment described in section 7.3. In this experiment the
automatically generated clusterings for the Iran EgyptAir subset were compared with the two
subsets of the gold standard GGS and HGS using the evaluation measures described in section
5.5. The standard vocabulary was used as indexing vocabulary. Clusterings were determined
for different values of k with k < rank(TSM) and k = 10, 25, 50, 75, 100, 125,150, 175, 200,
225, 300, 400, 500, 750, 1000. For each space size and each gold standard subset the number of
dimensions producing the best quality clusterings were selected.

In figure 7.4 the optimal number of dimensions kbest is plotted against the number of sen-
tences.
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Figure 7.4: Optimal number of dimensions in relation to number of sentences

The marks represent the optimal number of dimensions for a given number of sentences.
The dashed lines represent linear regressions of the optimal number of dimensions over number
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of sentences. The function for the linear regressions are:

fHGS(x) = 0.04x+ 48.13 with R2 = 0.9978 (7.1)

fGGS(x) = 0.11x+ 64.97 with R2 = 0.9990 (7.2)

TheR2 coefficient of determination is a statistical measure that measure how well the regression
line fits the data points. R2 can range from 0 to 1 where 1 represents a perfect fit of the model.
In this case the R2 values show that the regression lines almost perfectly fit the data.
This means that for both gold standard subsets the optimal number of dimensions is almost
linearly proportional to the number of sentences. The only difference between the two gold
standard subsets is that the slope and intercept for the HGS (red circles) are smaller than for the
GGS (green squares). Thus the optimal number of dimensions for comparison with the HGS is
always lower than for the GGS.

For the LOCAL space 50 respectively 75 dimensions produce the best results. In the LOCAL

space each sentence set is represented in its own space with 181 sentences on average. These
separate sentence sets are considerable smaller than the corpora normally used in IR. The re-
sults for IR described in section 4.4 are based on corpora containing thousands to millions of
documents. These small local spaces are homogeneous. They consist of sentences from news-
paper articles about one certain topic. Therefore a relatively small number of dimensions is
sufficient to produce top quality results. The best results for the EXTENDED LOCAL LSA space
(1088 sentences) are produced when a clustering space with 100 dimensions is used when the
clusterings created are compared to the HGS and with 200 dimensions for the GGS. However
when a GLOBAL space with thousands of documents (here 6088 documents) is used, the num-
ber of dimensions increase considerably. Here a space with 300 dimensions works best for the
comparison with HGS and for that with GGS a space with 750 dimensions.

This linear model of relation between k and number of sentences is only applicable if the
increase in subtopics is linearly proportional to the increase in sentences. This holds true in this
case, which is due to the structure of the collections. The additional sentences are not part of
the documents the original sentences sets were created from. So with every additional sentence
the number of subtopics and word usage patterns increase and hence the optimal number of
dimensions grows. If the sentences added had the same topics and used the same or similar
word usage patterns the increase in the required dimensions is expected to be much lower.

These results are consistent with the observation that the broader the topics or conceptual
content of a test collection the larger the optimal number of dimensions (Dumais, 1991). Brad-
ford (2008) suggest for term comparison that the increase in dimensions is not more than log-
arithmic. However he tested collections which range from several thousand to several millions
documents. He refers to an “island of stability” in the range of 300 to 500 dimensions for cor-
pora with 1, 2 and 5 million documents. Other papers suggest using fewer dimensions. With
regard to corpora containing ≈ 1000 documents the use of 100 dimensions was suggested (Du-
mais, 1991). Later when test collection containing thousands or tens of thousands of documents
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were used, Landauer and Dumais (2008) proposed to use 350 +/- 50 dimensions, which seemed
to work best for most corpora in IR.

It is noticeable that for the comparison with the hunters, clusterings created from a space
with fewer dimensions produce best results, whereas for the comparison with the GGS more
dimensions are needed. This observation is consistent with the presumption that less dimen-
sions work better for broader comparisons and more dimensions for more specific comparisons
(Wikipedia, 2011a). As described in section 6.2, hunters create coarser clusters, only using the
sentences that at first glance fit into a specific cluster. Gatherers however look at a sentence
in more detail. They find more fine-grained clusters. Therefore they use more sentences and
create more clusters. For this more specific comparison more dimensions work better.

Thus for the standard vocabulary and the EXTENDED LOCAL LSA space 100 dimensions
for the HGS and 200 dimensions for the GGS are the optimal number of dimensions for the
clustering space.

7.4.4 The optimal number of dimensions: dependence on vocabulary

In this section I examine whether the optimal number of dimensions kbest depends on the size
and/or on the content of the indexing vocabulary.

For this analysis the results from section 7.2 were used. In that experiment eight different
approaches to index term selection were tested. The SV includes all tokens separated by white
spaces, which are not listed on the SMART stop word list and occur in more than one sentence.
NUM1 includes all terms from the SV but all numbers are replaced by the character string
#num. NUM2 uses the same tokens as in the SV but here all number smaller than 1492 and
larger than 3000 are replaced by their number of digits. The vocabulary COLL consists of
the tokens from the SV and in addition of multi-word expression extracted from the data set.
The vocabularies Coll+Num1 and Coll+Num2 use the same terms as the COLL vocabulary but
the numbers are processed as in the NUM1 and NUM2 vocabulary respectively. For the NV
vocabulary the SV was filtered for nouns and verbs only. Accordingly the NV+Coll vocabulary
includes all tokens from NV and the collocations extracted. The vocabulary N contains only
nouns. With each indexing vocabulary different EXTENDED LOCAL LSA spaces were built
with k = 10, 25, 50, 75, 100, 125, 150, 175, 200, 225, 300, 400, 500, 750, 1000. The clusterings
automatically created from these spaces were compared against the two subsets of the gold
standard, HGS and GGS. For each vocabulary the k dimensional space that produces the best
clusterings was selected. Figure 7.5 shows the optimal number of dimensions in relation to the
indexing vocabularies.

In the previous section it was shown that the optimal number of dimensions kbest for the
SV is 100 for the HGS and 200 dimensions for the GGS. The correlation between the optimal
number of dimensions and the number of sentences was linear. This scatter plot of kbest over
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Figure 7.5: Optimal number of dimensions in relation to index vocabularies

number of terms and vocabularies, however, does not show a linear correlation. Furthermore
the optimal number of dimensions seems to fall while the number of terms increases.

This plot shows that the development of kbest over different vocabularies is similar for both
GS subsets. To obtain top results with vocabularies restricted to nouns or nouns and verbs (N,
NV and NV+Coll) more dimensions are needed in the clustering space than when full vocab-
ularies are used. Vocabularies including collocations always need more dimensions than their
complement without collocations. Unfortunately with the available results this behaviour can-
not always be confirmed for the HGS. However this might be because the interval in which k is
tested is too large. But it is not feasible to test all possible values for k. Anyway this would not
be possible in a real world application.

Earlier it was shown that the number of dimensions increases with the number of sentences
in a corpus. Normally with the number of sentences the number of terms increases as well
(until a certain degree). For example the standard indexing vocabularies for the local spaces
have 303 terms on average, the SV for the larger local space includes 1710 terms and the global
space 7421 terms. In this analysis of a possible correlation between dimensions and indexing
vocabularies things are different. Here the number of dimensions with which the best results
are achieved fall with increasing number of terms. This leads to the conclusion that the optimal
number of dimensions is not only dependent on the size of the TSM but also on the nature of the
indexing vocabularies. Furthermore, the fewer word classes are used the more dimensions are
needed: for the NV vocabulary 400 (resp. 125) dimensions works best and for the vocabulary
including only nouns 500 (resp. 250) dimensions are needed. It seems the less (semantic)
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information is gathered from the sentences, the more dimensions are needed.

7.4.5 Discussion

The optimal number of dimensions depends not only on the task and the corpus, as Quesada
(2007) argues, but is also influenced by other factors.

The fine-tuning of the clustering algorithm has an influence on kbest. The larger the thresh-
old values t the more dimensions are needed to achieve top results. Another factor that affects
the optimal number of dimensions is the clustering space. The more sentences adding new in-
formation to the corpus are included in a space, the larger is the optimal number of dimensions.
On the other hand the optimal dimensionality also depends on the content of the indexing vo-
cabulary. If only certain lexical categories like noun or verb are present in a vocabulary, more
dimensions are required in order to represent the sentences adequately. Last but not least the
gold standard used plays a part in choosing the right number of dimensions for the clustering
space. When the hunter subset of the gold standard for sentence clustering is used a lower rank
approximation of the original TSM is sufficient (100-275 in the larger local space). This con-
trasts to the gatherer subset of the gold standard (GGS) where more dimensions are needed to
produce top results (200-550 dimensions for the larger local space, depending on the vocabu-
lary). This is because the GGS requires a higher value for the threshold value t and as explained
before a larger t requires more dimensions. It can be concluded from the results that is is not
reasonable simply to take the values from IR. The standard value used for IR tends to be 300

dimensions, which would only be optimal for some space-vocabulary-GS settings.

The conclusions drawn from the results disprove the theories that is is possible to deduce the
optimal numbers of dimensions from the singular values or from the TSM. For a given space
size the co-occurrence matrices (TSM) and singular values are the same for both gold standard
subsets. Still the results show that different number of dimensions are needed for different
vocabularies, which are based on the same number of sentences but which differ only slightly
in the number of terms. Another argument against the idea of calculating the optimal number
of dimensions from the TSM is the difference in kbest for the two gold standard subsets.

For the remaining experiments I use the values for k in dependence on the gold standard
and vocabularies shown in table 7.13.

HGS (t = 0.25) GGS (t = 0.5)

vocab SV NUM2 COLL SV NUM2 COLL

k 100 100 125 200 275 275

Table 7.13: Optimal number of dimensions for the LARGER LOCAL LSA clustering space
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The experiments described in chapter 7 have shown which parameters and settings influence
the performance of LSA for sentence clustering and which setups produce the best quality sen-
tence clusterings to be used in MDS. In the next experiment I analyse how well LSA performs
in comparison with the simple word matching approach of VSM.

In the VSM (section 3.1) the measurement of similarity of two sentences is based on world
overlap since each dimension of a document vector corresponds to a term in the corpus. The
value of that vector cell represents the weight of the term the cell corresponds to in that sentence.
The number of dimensions of a document vector is determined by the number of terms in the
indexing vocabulary. In contrast to the VSM the dimensions or elements of a sentence vector
in the reduced LSA space corresponds to a word usage pattern (mathematically to a singular
value). The value in a vector element corresponds therefore to the weight of that word usage
pattern in the sentence.

I will illustrate this using the sample dataset from table 3.2. The sentences in the sample
data set are titles of technical reports: d1-d5 are about human computer interaction and d6-d9
about graphics. The sentence vectors created with the two different models – LSA and VSM –
are shown in tables 8.1 and 8.2.

For LSA, SVD was applied to TSM shown in table 3.3 and the three resulting sub-matrices
were reduced to three dimensions (k = 3). For sentence to sentence comparison the sub-matrix
Dk was scaled by Sk which results in the matrix shown in table 8.1. Whereas the sentence
similarity estimation in VSM is based on the overlap in index terms, in LSA the calculations
are based on the three dimensions or in other words on concepts or word usage patterns. Thus
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dim1 dim2 dim3
d1 0.38 -0.30 -0.16
d2 1.37 -1.83 -0.62
d3 1.41 -0.31 -0.21
d4 4.13 0.86 0.32
d5 0.30 -1.35 -0.65
d6 0.00 -0.16 0.52
d7 0.01 -0.41 1.13
d8 0.01 -0.60 1.56
d9 0.08 -0.80 1.13

Table 8.1: Sentence vectors for the sample data set in LSA space (k=3)

computer human interface response survey system time user eps trees graph minors
d1 1 1 1 0 0 0 0 0 0 0 0 0
d2 1 0 0 1 1 1 1 1 0 0 0 0
d3 0 0 1 0 0 1 0 1 1 0 0 0
d4 0 1 0 0 0 2 0 0 1 0 0 0
d5 0 0 0 1 0 0 1 1 0 0 0 0
d6 0 0 0 0 0 0 0 0 0 1 0 0
d7 0 0 0 0 0 0 0 0 0 1 1 0
d8 0 0 0 0 0 0 0 0 0 1 1 1
d9 0 0 0 0 1 0 0 0 0 0 1 1

Table 8.2: Sentence vectors for the sample data set in traditional vector space

for example the two sentences d8 “Graph minors IV: Widths of trees and well-quasi-ordering”
and d9 “Graph minors: A survey” have a cosine similarity of 0.97 as opposed to 0.67 in the
VSM. In vector space the sentences d6 “The generation of random, binary, unordered trees”
and d9 receive a cosine similarity of 0 since they do not share any keywords. In LSA the cosine
score for the two sentences is 0.95. This value is due to the fact that sentence d6 contains only
one keyword trees. This term co-occurs twice with graph, so the sentences d6 and d9 are link
through this second order co-occurrence.

To demonstrate the influence of the similarity calculation of sentences on sentence cluster-
ing, I use HAC to cluster the sentences from the sample dataset automatically. The results are
shown in the dendrograms in figure 8.1.

The left figure shows the cluster tree for LSA, the right figure for VSM. It can be seen that
in both vector spaces two distinct groups of sentences emerge [d6, d7, d8, d9] and [d1, d2, d3,
d4, d5]. This distinction into two groups is correct as the sentences d1-d5 are about human-
computer interaction and d6-d9 about graphics. However the links in the VSM cluster tree are
higher than the links in the LSA cluster tree. That means that the distance between the objects
is greater in the traditional vector space whereas in LSA the objects are closer to each other. If
the tree were cut at t = 0.5 in order to get flat clusters, the clusterings would be CLLSA=[d1, d2,
d3, d4, d5][d6, d7, d8, d8] with an intra-cluster similarity of 0.82 and inter-cluster similarity of
0.01. For the VSM the clustering would be CLV SM=[d2, d5][d6, d7, d8, d9][d1, d3, d4] with an
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Figure 8.1: Dendrogram for a sample data set

intra cluster similarity of 0.54 and inter cluster similarity of 0.08. This small example shows that
there is a difference between clusterings created on the basis of a traditional vector space (VSM)
and on the basis of an LSA space. In this small data set the word usage pattern were very small
and the scope was limited. Some MDS systems described in section 2.1, for example Goldstein
et al. (2000); Lin and Hovy (2002), use the traditional vector space to calculate similarities
between passages or sentences. The experiments described in this chapter show whether LSA
performs better in estimating the similarity between sentences or passages than the VSM.

8.1 Comparison of LSA and VSM

In this experiment I compare the sentence clustering performance of two models – LSA and
VSM. The models use different criteria for estimating the similarity of two sentences. In VSM
the similarity of two sentences is based on simple world overlap, whereas in LSA high-order
co-occurrences and word usage patterns provide the foundation for the similarity calculation.
This is due to the different clustering spaces. In the VSM the complete space described by the
original TSM is used. In LSA the original TSM was split into three submatrices using SVD
(section 3.2). Then the matrices were reduced to k dimensions and the clustering space CDk

was created using the submatrices Dk and Sk.

The performance of LSA for sentence clustering for MDS depends on some parameters.
For this experiment the cophenetic distance t for cutting the clustering tree is set to 0.25 for the
HGS and to 0.5 for the GGS (section 7.1). An extended local space is created containing all
sentence sets (section 7.3) and the indexing vocabularies SV, Num2 and Coll are used (section
7.2). The numbers of dimensions used for the LSA clustering space are listed in table 7.13. For
the VSM the same settings were used apart from k because in VSM the complete space is used.
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For each sentence set 12 clusterings were created – six to compare to the HGS and six for
comparison with the GGS. For each indexing vocabulary tested two clustering were created –
one on the basis of LSA and one on basis of the VSM. First the clusterings created using the
two models described above were evaluated against the gold standard described in section 6.2
using the evaluation measures from section 5.5.

8.2 Results

The results of the evaluation can be seen in tables 8.3 and 8.4.

Table 8.3 shows the Vbeta scores for each sentence set. These results show that for almost
all sentence sets and all vocabularies the quality of the clusterings created on the basis of the
LSA is higher than the quality of the clustering created using the VSM. The sole exception is
the Schulz data set. Regardless of the indexing vocabulary and the gold standard subset, here
the VSM always outperforms LSA.

HGS GGS

Vocabulary SV Num2 Coll SV Num2 Coll

Model LSA VSM LSA VSM LSA VSM LSA VSM LSA VSM LSA VSM

k 100 100 125 200 275 275

EgyptAir 0.61 0.34 0.63 0.34 0.62 0.39 0.58 0.39 0.59 0.36 0.57 0.41
Hubble 0.70 0.37 0.69 0.36 0.71 0.37

Iran 0.60 0.48 0.60 0.54 0.60 0.48 0.57 0.56 0.61 0.55 0.60 0.57
Rushdie 0.57 0.46 0.58 0.46 0.60 0.46 0.64 0.36 0.61 0.38 0.62 0.41
Schulz 0.39 0.58 0.40 0.58 0.43 0.58 0.39 0.61 0.39 0.61 0.39 0.62

Volcano 0.64 0.52 0.66 0.52 0.66 0.52 0.64 0.41 0.68 0.41 0.66 0.44

Table 8.3: Vbeta scores for each sentence set

The Num2 vocabulary seems to produce the best clusterings for LSA when compared to the
GGS and the Coll vocabulary when compared to HGS. For the VSM the Coll vocabulary seems
to work best for both gold standard subsets. Leaving the Schulz dataset out of consideration,
LSA produces considerably better clustering than the VSM.

Table 8.4 shows the average Vbeta scores for the sentence sets. The first row shows the
scores for the training set (Iran EgyptAir subset), the following two rows show the average
Vbeta scores for all sentence sets from the test set, i.e., excluding the training sets, with and
without the Schulz dataset. The lower part of the table shows the scores for the whole data set
including the training set, again with and without the Schulz set.

There is a noticeable difference in the scores between the training set and the test set, es-
pecially for the HGS. However when compared to the average Vbeta scores for the whole data
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HGS GGS

Vocabulary SV Num2 Coll SV Num2 Coll

k 100 VSM 100 VSM 125 VSM 200 VSM 275 VSM 275 VSM

training set 0.66 0.36 0.66 0.35 0.67 0.38 0.58 0.39 0.59 0.36 0.57 0.41

test set 0.55 0.51 0.56 0.53 0.57 0.51 0.56 0.48 0.57 0.49 0.57 0.51
- w/o Schulz 0.60 0.49 0.62 0.51 0.62 0.49 0.62 0.44 0.64 0.45 0.63 0.47

all 0.59 0.46 0.59 0.47 0.60 0.47 0.56 0.47 0.58 0.46 0.57 0.49
-w/o Schulz 0.63 0.44 0.63 0.45 0.64 0.44 0.61 0.43 0.62 0.43 0.61 0.46

Table 8.4: Average Vbeta scores for different combinations of the data set

set excluding the Schulz sentence set the differences are considerably lower, meaning that fine-
tuning of parameters and options on the basis of the training set works well. Nevertheless it is
not impossible that there might be a better combination of parameters and options. However
in a real world application a gold standard for the whole data set at the time of testing is rarely
available.

The results show that LSA produces the best results in comparison to the HGS when the
Coll vocabulary is used, whereas the VSM performs best with the Num2 vocabulary. When the
clusterings are compared to the GGS it is the other way round.

HGS GGS
Model LSA125 VSM LSA275 VSM
Vocabulary Coll Num2 Num2 Coll
Vbeta 0.64 0.45 0.62 0.46
NVbeta 0.81 0.42 0.74 0.34
V0.5 0.66 0.49 0.63 0.47
NMI 0.65 0.56 0.63 0.52
NV I 0.22 0.16 0.31 0.27
F 0.13 0.13 0.13 0.11
Fκ 0.17 0.04 0.17 0.10

Table 8.5: Detailed results for LSA and VSM

Table 8.5 shows the scores from all evaluation measures chosen in section 5.5. For this
comparison the vocabulary that works best for both models was chosen. The results show that
when the clusterings are evaluated using different measures, LSA receives for all measures
except the NV I better scores than the VSM.

Figure 8.2 shows the quality of the automatically generated sentence clusterings in compari-
son with the three different gold standard subsets HGS, GGS and CGS calculated using the Vbeta
measure for different numbers of k. The values were obtained using the EXTENDED LOCAL
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LSA space and the SV vocabulary. For evaluation the average Vbeta for the five sentence sets
EgyptAir, Hubble, Iran, Rushdie and Volcano was taken. As explained above the Schulz data
set was excluded.
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Figure 8.2: Vbeta scores for clusterings created using LSA and VSM with different k

These results show that the range of k in which LSA outperforms VSM is quite large. So
even if the values for k can not be determined using a training set the probability that k is chosen
so that LSA produces better results than VSM is high.

8.3 Discussion

Differences between clusterings In this section I evaluate how the clusterings created on the
basis of an LSA space differs from clusterings created on the basis of the VSM space. For this
analysis I chose sentence clusters from the clusterings created for the Rushdie data set. For the
comparison to the HGS the clustering created by Judge S was chosen to represent the HGS. The
clustering spaces for LSA and VSM were created using COLL vocabulary since for the Rushdie
sentence set the best results for both models were achieved using this vocabulary. The LSA
space was reduced to k = 125 dimensions. I chose the cluster with the topic “Rushdie spent
a decade in hiding following a death sentence issued by Ayatollah Khomeini in 1989” from
the clustering created by Judge S. Table 8.6 gives an overview of the clusters and sentences
discussed. The full sentence cluster and the equivalences created automatically on basis of the
LSA space and the standard space are shown in Table 8.8. The original cluster from the gold
standard clustering contains the sentences 22, 61, 74, 79, 86 and 94. With the VSM only a
cluster containing the sentences 61 and 94 was created. The other four sentences are not part
of any cluster in the VSM clustering. In the LSA clustering there is a cluster containing three
of the six reference sentences namely 61, 86 and 94. Sentences 61 and 94 are almost identical
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LSA VSM Hunter
11 21 61 66 86 94 61 94 22 61 74 79 86 94

2 11 21 31 38 66
31 38
43 79

Table 8.6: Comparison of clusters created by LSA, VSM and by a hunter

sentences differing in only a few words. The LSA cluster and the reference cluster have one
more sentence in common, namely 86. Two of the remaining sentences from the reference
cluster (22 and 74) are not part of any cluster in the LSA clustering. Sentence 79 was clustered
together with sentence 39 (“While stopping short of revoking a death sentence against Rushdie,
Iran says it won’t adopt any measures that threaten his life, or anyone connected to his book –
The Satanic Verses.”) in the LSA clustering.

The LSA cluster contains the sentences 11, 21, 61, 66, 86 and 94. From reading the sen-
tences they are seem to be very similar. But the human judge discriminated between the two
topics in these sentences. That is why the LSA cluster and the reference cluster have only three
sentences in common. The other three sentences from the LSA cluster were put in a new cluster
by Judge S with the topic headline “Ayatollah Khomeini issued a death sentence on Rushdie in
1989”. For the human annotator there is a distinction between the conviction and the result of
it, namely that Rushdie has been living in hiding since then. Nevertheless in the LSA clustering
these sentences were at least used and put into one cluster in which the sentences are similar. In
the VSM clustering the sentences don’t even occur. On basis of the VSM only very few clusters
were created: three cluster including 6 sentences in total. The LSA clustering consists of 18
clusters with 50 sentences in total. The clustering created by Judge S includes 45 sentences in
10 clusters.

The gatherers did not make the distinction between the two groups of sentences discussed
before. Here the clustering created by Judge A was chosen to be compared to the clustering
created on the basis of 200-dimensional LSA space including the standard vocabulary and a full
VSM space including the Coll vocabulary. Table 8.7 gives an overview of the sentences and
clusters in consideration.

LSA VSM Gatherer
11 21 31 61 66 74 79 86 94 11 21 61 66 86 94 2 11 21 31 38 48 61 66 79 86 94
2 38

Table 8.7: Comparison of a cluster created by LSA, VSM, and a gatherer
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Here the LSA cluster and the human created cluster have 8 sentences in common. In con-
trast the VSM cluster and the reference cluster share only six sentences. The VSM clustering
contains seven clusters with 18 sentences. 73 sentences are grouped into 24 clusters in the LSA
clustering. Judge A used 70 sentences in 15 clusters.

The examples from both gold standard subsets show that the clusters created on basis of the
LSA space bear much more resemblance to the clusters created by human judges than the VSM
clusters. Moreover the overall characteristics (number of sentences, number of clusters) of the
clusterings are more similar between the LSA clusterings and the human created clusterings as
between the VSM clusterings and the human clusterings.

Schulz data set The LSA clusterings for the Schulz data set received the lowest scores. The
clusterings for this set created on basis of the traditional space received higher scores. The
question remains, why this set is different.

The Schulz sentence set is the largest sentence set in the corpus. It contains 248 sentences
which come from only 5 documents. The other sets have 168 sentences on average. The Schulz
sentence set is the only set extracted from a DUC document set from 2003. In contrast to DUC
2002, in 2003 the tasks were not limited to general single and multi document summarization.
In 2003 new tasks were introduced. One of the tasks is to produce a short summary for a cluster
given a viewpoint. The viewpoints for the Schulz document set are:

• Peanuts comic strip defined Charles M. Schulz’s life

• Chronology of “Peanuts” creator Charles Schulz’s career

• The life, death, and accomplishments of Charles Schultz, creator of the popular comic
strip “Peanuts”

• Spread of Peanuts comic strip to world-wide audience.

Thus the document was designed to capture all of these different viewpoint and topics. The
other documents set from which the sentence sets were drawn, were designed with a general
summary in mind. The Schulz data set is not as homogenous as the other sets.

Since there are more topics within the Schulz sentence set than there are in the other sentence
sets, other parameters may have to be used. To examine this, I ran another experiment using
different number of dimensions where k = 10, 25, 50, 75, 100, 125, 150, 175, 200, 225, 300,
400, 500, 750, 1000. It turned out that for the Schulz data set many more dimensions were
needed. Table 8.9 shows Vbeta scores for the three selected vocabularies. In contrast to the
earlier experiment here the optimal number of dimensions for the Schulz sentence set was used.

In the previous experiment k was set to 100 or 125 for comparison to the HGS and to 200 or
275 for comparison to the GGS. Here k ranges from 600 to 700 when compared to the HGS and



134 8.4. CHAPTER SUMMARY

HGS GGS
Vocabulary SV Num2 Coll SV Num2 Coll

Model LSA VSM LSA VSM LSA VSM LSA VSM LSA VSM LSA VSM
k 650 600 700 1000 1000 1000

Schulz 0.67 0.58 0.65 0.58 0.66 0.58 0.59 0.61 0.61 0.61 0.59 0.62

Table 8.9: Vbeta scores for the Schulz sentence set with optimal number of dimensions
for selected vocabulary

for the GGS comparison the optimal number of dimensions is k = 1000. However even when
the optimal number of dimensions is used the VSM clusterings receives higher scores when
compared to the gatherer subset. In comparison to the hunters the LSA clusterings outperforms
the VSM clustering when the optimal number of dimensions is used.

8.4 Chapter summary

After this set of experiments it can be said that clusterings created on basis of a reduced LSA
clustering space are more similar to clustering created by humans than clusterings created on
basis of a standard VSM.

Various factors have an impact on the quality of the clusterings created on the basis of an
LSA space. One very important factor is the optimal number of dimensions. This is still the
most crucial point in sentence clustering with LSA for MDS. When the clusterings created
should include clusters for the most important themes in a document collection, fewer dimen-
sions are needed. If clusterings are to be created which are more similar to clusterings created by
gatherers, that is to say more detailed clusters should be created, more dimensions are needed.

The optimal number of dimensions also depends on the size of the clustering space, the ho-
mogeneity of the data set and the clustering algorithm. I also showed that even when the optimal
number of dimensions cannot be estimated using a training set, the probability of choosing a
value for k where LSA does not outperform VSM is quite low, since the range of k for which
LSA produces better results than VSM is quite big as can be seen in figure 8.2.

Another important factor in this setup is the threshold parameter t which specifies where to
cut the clustering tree into separate clusters. For clustering resembling hunter clusterings the
tree can be cut at a lower level, whereas when gatherer-style clusterings should be created the
threshold has to be raised.

The size of the clustering space is another factor that has a great impact on the quality of a
clusterings. For sentence clustering for MDS a LOCAL or better an EXTENDED LOCAL space is
preferable to a GLOBAL space.

The selection of an indexing vocabulary has a minor effect of the quality of the clusterings.
Indexing vocabularies including only nouns or nouns and verbs does lead to lower quality clus-
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terings. However the differences in full indexing vocabularies (those not limited to certain word
classes) are marginal. A full indexing vocabulary including collocations seems to work best for
a hunter strategy and an indexing vocabulary where numbers are replaced by their numbers of
digits are best used for clustering resembling gatherer clusterings.

Another conclusion that can be drawn from the experiments is that in general it is possible to
train the sentence clustering system on a smaller training set. However this is only possible if the
data corpus is homogeneous and the document sets were all designed for the same task. Then
even the optimal number of dimensions k can be predefined without great loss of performance.
Of course it is possible that for each single sentence set better settings can be found. However,
given that gold standards for sentence clustering in MDS are rare, a system can be trained on a
small set of data.
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Chapter 9

Conclusion

Das also war des Pudels Kern!12

Faust
JOHANN WOLFGANG GOETHE

In this thesis, the applicability of Latent Semantic Analysis (LSA) to sentence clustering
for MDS was investigated. The assumption was made that LSA could provide a text generation
system with better quality sentence clusters than a more shallow approach like VSM. In contrast
to VSM, which measures the similarity of sentences by word overlap, LSA takes word usage
patterns into account.

In chapter 4, I introduced and discussed essential parameters that might influence the quality
of sentence clusterings in general and when using LSA in particular. The parameters include op-
tions for creating partitional clusters from hierarchical cluster trees, type of index vocabularies,
size of the semantic space, and the number of dimensions used in LSA.

To evaluate sentence clusterings directly, which has never been done before in MDS, and to
assess the influence of the described parameters on the quality of sentence clusterings, a clearly
laid out evaluation strategy was developed (chapter 5). This strategy includes an external eval-
uation scheme using a compound gold standard. Different evaluation measures for comparing
automatically generated clusterings against the gold standard were discussed and evaluated in
section 5.5, with the conclusion that metrics based on entropy that measure both homogeneity
and completeness of a clustering solution are most suitable for sentence clustering in MDS.

The first major contribution of this thesis is the creation of the first compound gold stan-
dard for sentence clustering. Several human annotators were asked to group sentences from a
data set, extracted from DUC document clusters, into clusters of similar sentences. They were
requested to follow the guidelines provided to them. These guidelines were especially created
for human sentence clustering in order to reduce the variation in human clusterings (section

12“So that was the quintessence of the cur!”
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5.4). While analysing the clusterings created by human judges two distinct types were identi-
fied: hunters and gatherers, who are clearly distinguishable by the size and the structure of their
clusterings.

The second major contribution is the analysis of the most important parameters for latent se-
mantic sentence clustering. Using the gold standard the influence of the parameters introduced
in chapter 4 on the quality of the sentence clusterings was evaluated (chapter 7). These exper-
iments showed that the threshold for the cophenetic distance to extract the partitional clusters
from a dendrogram varies for the two gold standard subsets. For the HGS a lower threshold
is most suitable whereas a higher t is required to obtain larger clusters that are more similar
to clusterings produced by gatherers. Different indexing vocabularies on the other hand hardly
influence the sentence clustering quality. The size of the semantic space has a larger impact on
the quality of sentence clusters. The EXTENDED LOCAL LSA provides the best results. During
analysis of the optimal number of dimensions for LSA in sentence clustering it was verified that
the quality of the clusterings vary for different k and the LSA pattern is similar to that of LSA in
IR. Furthermore it was established that the optimal number of dimensions depends on different
parameters, e.g., the size of the semantic space and the threshold for the cophenetic distance.
The most striking result is that the optimal number for k depends on the gold standard subset the
clusterings are compared to. If the system is to create smaller clusterings incorporating only the
most salient information from a document set, that is to say if the clusterings are more similar
to clusterings created by hunters, fewer dimensions are needed than when the system-generated
clusterings are compared with clusterings created by gatherers.

In the final experiment (chapter 8), it was shown that when the same parameter settings are
used LSA outperforms VSM significantly in clustering sentences for MDS. I also showed that
the range of k in which LSA outperforms VSM is large, so that the probability to choose a value
for k where LSA does not outperform VSM is very low.

In future work I would like to extend my approach to co-cluster words, phrases and sen-
tences. Different sized units can help text-to-text generation systems to produce better and
grammatical sentences for an abstract. The challenge is to extract the most content bearing
words and phrases from the sentences for clustering. For word selection different strategies
need to be tested and evaluated. One strategy would be to select only nouns and verbs, another
to restrict the words for clustering to include only subjects, objects and predicates. Another
problem that needs to be addressed is the extraction of phrases from sentences. Here the def-
inition of a phrase will be essential. Other considerations include the usefulness of a type of
phrase to a text-to-text generation system and the applicability of the clustering algorithm to co-
clustering. The different approaches and algorithms to be used need to be evaluated. Therefore
the gold standard needs to be extended to cover words and phrases. Another interesting con-
tinuation of this work would be to extract the most important information from the clusters to
create extracts or abstracts. A definition of most important information and a strategy to extract
it, has to be defined. One approach is to select the text units that are nearest to the center of a
cluster.
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Appendix A

Guidelines for sentence clustering

Task T1 Form a set of clusters. A cluster corresponds to one set of sentences that are similar or
closely related to each other. Not every sentence will belong to a cluster.

T2 Create your own description for each of clusters in form of a sentence and write it down.

T3 Rank the clusters by importance.

Material You will get a list of sentences ordered by date. Each sentence has a unique ID consisting
of the document number x and a sentence number y followed by the date the document was
published, the news-agency and the actual sentence:

17.149 1996-03-07 XIE We have to defend the Islamic culture, " he said.

The document number, the date and agency is purely for your information, because sometimes
it is helpful to know which sentences belong to the same document and in which order the docu-
ments were published.

Procedure

P1 Read all documents. Start clustering from the first sentence in the list. Put every sentence
that you think will attract other sentences into an initial cluster. If you feel, that you will not
find any similar sentences to a sentence, put it immediately aside. Continue clustering and
build up the clusters while you go through the list of sentences.

P2 You can rearrange your clusters at any point.

P3 When you are finished with clustering, check that all important information from the docu-
ments is covered by your clusters. If you feel that a very important topic is not expressed in
your clusters, look for evidence for that information in the text, even in secondary parts of a
sentence.

P4 Go through your sentences which do not belong to any cluster and check if you can find a
suitable cluster.

P5 Do a quality check and make sure that you wrote down a sentence for each cluster and that
the sentences in a cluster are from more than one document.

P6 Rank the clusters by importance.

P7 Return a list of clusters in the form:

rank of cluster – ”your sentence”: sentence number〈blank〉sentence number〈blank〉...

General Principal There will be several demands that pull against each other; choose what to you
seems the best compromise. There is no ideal clustering. Do your best.
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Similarity There is a whole spectrum of similarities including the following:

a) paraphrases (same person, same event, same time but different wording; roughly same
amount of information in the sentences)

b) sentences that are actually paraphrases but differ in numbers (see rule 7)

c) part of a sentence (clause or phrase) is similar to another sentence (partial information
overlap)

d) similarity between a sentence and a pair of sentences

In general prefer a)

Most important rules They should always be kept in mind.

R1 Clusters should be pure, i.e. each cluster should contain only one topic.

R2 In an ideal cluster the sentences (or at least one part of each sentence) would be very
similar (almost paraphrases).

R3 The information in one cluster should come from as many different documents as possible.
The more different sources the better.

More specific rules

R4 Each cluster must have at least two sentences and should have more than two if possible.

R5 Each cluster must include sentences from different documents. A cluster consisting only of sen-
tences from one document is not a valid cluster.

R6 A sequence of consecutive sentences from one document should not normally be a cluster. There
is one exception: if the sentences are very similar they can end up in one cluster (but only if they
attract at least one sentence from another document).

R7 If similar sentences only vary in numbers they can still belong to the same cluster:

a) Vagueness in numbers

• Clark Air Base is in Angeles, a city of more than 300,000 people

about 50 miles north of Manila.

• 350,000 residents live in Angeles City, where the air base is

located, about 50 miles north of Manila.

b) If a sentence provides new or updated numerical information and only differs from another sen-
tence in numbers, these sentences can still belong to the same cluster.

• Two people have been reported killed so far.

• At least four people have died, 24 have been hurt and four

have been listed as missing since Pinatubo began erupting Sunday.

R8 Not every sentence inside a cluster will be equally similar to all sentences in that cluster.There may
be a subset of sentences that is particularly similar to each other. That is o.k. as long as you think
the overall cluster is similar.

R9 Do not use too much inference.
Only because A⇒ B (B follows from A) does not mean that they should be within the same cluster.

R10 If a sentence consists of more than one part and the parts would belong to different clusters, put the
sentence in the more important cluster, particularly if this cluster does not yet include a sentence
from the document the sentence in question belongs to.



APPENDIX A. GUIDELINES FOR SENTENCE CLUSTERING 151

R11 Generalisation is allowed. Sentences in a cluster do not have to be very similar. They still need to
be about the same person, fact or event, but they do not have to cover exactly the same information
or amount of information.

R12 Take discourse/context into account. Do not look at that sentence on its own but within context of
the whole document. If something important is missing from the previous sentences add it to the
sentence.

• Charles Schulz, the creator of ‘‘Peanuts,’’ died in his sleep on

Saturday night at his home in Santa Rosa, Calif.

• He was 77. ⇒ Charles Schulz was 77 when he died.

R13 If two sentences cover exactly the same information as one other sentence, only put them into a
cluster if the information is very important for the summary.

• "No hypothesis for the cause of this accident has been accepted,

and the activities that I have outlined indicate that there is

much that still needs to be done before a determination of cause

can be reached. "

• "No hypothesis for the cause of this accident has been accepted,"

Hall said Friday in a statement.

• "There is much that still needs to be done before a determination

of cause can be reached."
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idf , 33
ntf , 33
ntf -idf , 54
ntf -isf , 32, 33, 44, 55
tf -idf , 24, 32
tf -isf , 24, 55
k, see number of dimensions
BOSSEClu, 30, 31, 42, 45, 53, 57, 61

annotator, 16, 25, 27, 30, 41, 62, 65, 83, 89–
101

automatic text summarization, 16, 19–21
audience, 20
indicative, 20
informative, 20, 21
output type, 21
query, 20
reduction rate, 21
scope, 20
source, 20

baseline, 100
bucket cluster, 84

canonical unit vector, 38
cluster algorithm, 45–47, 49–52, 61, 103

agglomerative, 46
distance metric, 46, 49, 50, 103
divisive, 46
hard, 46
hierarchical, 46
linkage, 46, 49, 50, 103
partitional, 46
soft, 46

clustering space, 30, 40
comparing LSA to VSM, 125–135

completeness, 71, 72, 76, 81, 86
cophenetic distance, 50, 51
cosine similarity, 22–24, 33–35, 40, 47, 50
Cranfield II, 52–54

data set, 41–42, 89
constraints, 41, 43
training set, 103

dendrogram, 46, 50, 51, 106, 107
diagonal matrix, 38
Document Understanding Conferences (DUC),

21–22, 26, 27, 41–42, 56, 66

eigenvalue, 38, 39, 59
Eigenvalue Decomposition (EVD), 38, 39
eigenvector, 38, 39
evaluation

gold standard, 71–82
direct, 16, 25, 27
external cluster, 61
gold standard, 16, 30, 61–88
indirect, 16, 25
internal cluster, 61, 62
method, 16
strategy, 16, 25, 30

evaluation measure, 16, 30, 62, 71, 73–82, 100
Vβ , 75, 87, 101, 104–106, 111, 112
Vbeta, 75, 104–106, 109, 111, 112, 129
Entropy, 74
F-measure, 78, 101
Fleiss’ κ, 64, 78, 101
Normalized Mutual Information (NMI), 76,

104–106, 111, 112
Normalized Variation of Information (NVI),

77, 101, 104–106, 111, 112
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Purity, 79
Rand index (RI), 78
Variation of information (VI), 77

evaluation strategy, 61–88

gatherer, 91, 101
gold standard, 16, 30, 49, 50, 62–65, 89–102

complete (CGS), 105, 106, 109, 129
gatherer (GGS), 102, 104–106, 109–116,

119–122, 124, 129
hunter (HGS), 102, 105, 106, 109, 110,

112–116, 119–123, 129
guideline, 16, 25, 27, 30, 62, 65–71

hcluster, 45, 47
hierarchical agglomerative clustering (HAC),

30, 45, 49, 103, 126
homogeneity, 71, 72, 76, 81, 86
human generated clusterings, 16, 30
hunter, 91, 101
hunters and gatherers, 91–99

implementation, 16, 31, 42–45
index vocabulary, 27, 29, 30, 49, 52–56, 109–

114, 122–124
COLL+NUM1, 56, 110, 112, 113
COLL+NUM2, 56, 110–114
COLL, 56, 110, 112–114, 122, 124
NV+COLL, 56, 110, 113
NV, 56, 110, 112, 113
NUM1, 55, 110, 112, 113, 122
NUM2, 56, 110–114, 122, 124
N, 56, 110, 112, 113
SV, 55, 110–114, 122

information overlap, 15, 21–23
Information Retrieval (IR), 16, 29, 31, 34, 39,

52, 55, 58, 60, 76, 113, 122
inter-annotator agreement, 16, 62, 64–65, 100–
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inter-cluster similarity, 23, 61, 62, 108, 126
intra-cluster similarity, 23, 24, 61, 62, 108, 126

judge, see annotator

Latent Semantic Analysis (LSA), 15–17, 25–
31, 34–40, 49, 52, 54–60, 118–120,
125–135

Latent Semantic Indexing (LSI), 34, 42, 54, 58
lexical chains, 23
LSA in summarization, 25–27
lumping and splitting, 98, 99

measure of importance, 15, 22
MEDLARS 1033 (MED), 52–54, 58
Microsoft Research Paraphrase Corpus, 30, 49,

50, 103
MMR, 22, 27
Multi-Document Summarization (MDS), 15–
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NLTK, 44, 54
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parameter, 16, 27, 30, 49, 50
optimization, 17, 103–125
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RASP, 28, 43, 44
redundancy identification, 15, 27–29
redundant information, 15, 19, 21–23, 28
ROUGE, 25, 26

sentence clustering, 15, 16, 23, 24, 27, 28, 45,
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separate clusters, 84
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singular value, 26, 27, 59
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Text Analysis Conference (TAC), 21
text-to-text generation, 23
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